EN 14968-2006 en Semantics for groundwater data interchange《地下水数据交换的语义学》.pdf

上传人:unhappyhay135 文档编号:714631 上传时间:2019-01-04 格式:PDF 页数:54 大小:498.60KB
下载 相关 举报
EN 14968-2006 en Semantics for groundwater data interchange《地下水数据交换的语义学》.pdf_第1页
第1页 / 共54页
EN 14968-2006 en Semantics for groundwater data interchange《地下水数据交换的语义学》.pdf_第2页
第2页 / 共54页
EN 14968-2006 en Semantics for groundwater data interchange《地下水数据交换的语义学》.pdf_第3页
第3页 / 共54页
EN 14968-2006 en Semantics for groundwater data interchange《地下水数据交换的语义学》.pdf_第4页
第4页 / 共54页
EN 14968-2006 en Semantics for groundwater data interchange《地下水数据交换的语义学》.pdf_第5页
第5页 / 共54页
点击查看更多>>
资源描述

1、BRITISH STANDARDBS EN 14968:2006Semantics for groundwater data interchangeThe European Standard EN 14968:2006 has the status of a British StandardICS 13.060.10; 35.240.99g49g50g3g38g50g51g60g44g49g42g3g58g44g55g43g50g56g55g3g37g54g44g3g51g40g53g48g44g54g54g44g50g49g3g40g59g38g40g51g55g3g36g54g3g51g4

2、0g53g48g44g55g55g40g39g3g37g60g3g38g50g51g60g53g44g42g43g55g3g47g36g58BS EN 14968:2006This British Standard was published under the authority of the Standards Policy and Strategy Committee on 29 September 2006 BSI 2006ISBN 0 580 49297 4National forewordThis British Standard was published by BSI. It

3、is the UK implementation of EN 14968:2006.The UK participation in its preparation was entrusted to Technical Committee CPI/113, Hydrometry.A list of organizations represented on CPI/113 can be obtained on request to its secretary.This publication does not purport to include all the necessary provisi

4、ons of a contract. Users are responsible for its correct application.Compliance with a British Standard cannot confer immunity from legal obligations.Amendments issued since publicationAmd. No. Date CommentsEUROPEAN STANDARDNORME EUROPENNEEUROPISCHE NORMEN 14968August 2006ICS 13.060.10; 35.240.99Eng

5、lish VersionSemantics for groundwater data interchangeSmantique pour lchange de donnes concernant leseaux souterrainesSemantik fr den Austausch von GrundwasserdatenThis European Standard was approved by CEN on 1 August 2006.CEN members are bound to comply with the CEN/CENELEC Internal Regulations wh

6、ich stipulate the conditions for giving this EuropeanStandard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such nationalstandards may be obtained on application to the Central Secretariat or to any CEN member.This European Stand

7、ard exists in three official versions (English, French, German). A version in any other language made by translationunder the responsibility of a CEN member into its own language and notified to the Central Secretariat has the same status as the officialversions.CEN members are the national standard

8、s bodies of Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France,Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania,Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.EUROPEAN C

9、OMMITTEE FOR STANDARDIZATIONCOMIT EUROPEN DE NORMALISATIONEUROPISCHES KOMITEE FR NORMUNGManagement Centre: rue de Stassart, 36 B-1050 Brussels 2006 CEN All rights of exploitation in any form and by any means reservedworldwide for CEN national Members.Ref. No. EN 14968:2006: EEN 14968:2006 (E) 2 Cont

10、ents Page Foreword3 Introduction .4 1 Scope 5 2 Terms and definitions .5 3 File structure for data interchange 7 4 Piezometric concepts7 5 Interchange prerequisites.14 6 Object dictionary14 7 Attribute dictionary20 Annex A (normative) Data model 43 Annex B (informative) Lithology name.45 Bibliograph

11、y 50 EN 14968:2006 (E) 3 Foreword This document (EN 14968:2006) has been prepared by Technical Committee CEN/TC 318 “Hydrometry”, the secretariat of which is held by BSI. This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorse

12、ment, at the latest by February 2007, and conflicting national standards shall be withdrawn at the latest by February 2007. According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgi

13、um, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom. EN 14968:2006 (E) 4 Introduction

14、Piezometric data, e.g groundwater level, pressure, groundwater flow, represent a valuable resource and their value is likely to increase in the context of today at the European, national and local levels. Indeed, the environment is one of the main concerns of the European Union, and it is reflected

15、in the new EU Directives such as the “EU Water Framework Directive“ requesting that knowledge regarding environment be shared at the national or international levels. Equally, groundwater quantitative data also represent a source of wealth for local actors (cities, local authorities, private compani

16、es, etc.) in undertaking their present activity. For example, a town that uses groundwater for drinking water needs groundwater data to define its drinking water policy, and run its drinking water plant. Towns can directly provide the data that they need or, if data are not available; they have to c

17、ollect them from various producers that are sometimes located in different countries. In this latter case, this standard provides for a unique data exchange interface which will help towns to collect data more easily and producers to disseminate them quicker. The aim of this standard is to describe

18、data necessary to produce “initial“ groundwater quantitative data. The description of aggregate data for groundwater lies outside the scope of this standard. For example, the depth measurement can be carried out in accordance with this standard, but not the altitude measurement. This standard is des

19、igned to meet producers needs and not to define data that are required for exchange between national or European organizations. This standard gives the complete semantic basis necessary to store and exchange groundwater quantitative data. To perform such exchanges, the producer may use a XML file su

20、ch as recommended by European organizations but these semantics can be used with other file formats (text file, HTML). EN 14968:2006 (E) 5 1 Scope This standard covers the semantics (meaning) of data exchanged between data producers, users and databanks, independently from the software device and th

21、e formats used to exchange the files. It provides a consistent set of terms defining selected objects and their related attributes. The standard is not applicable to: data describing domestic uses (drinking water, waste water) or qualitative aspects ; real time data or data calculated from models; a

22、ll the various characteristics on the organizations exchanging data concerned; debimetric measures. 2 Terms and definitions For the purposes of this document, the following terms and definitions apply. 2.1 aquifer system hydrogeological entity within which all components are in hydraulic continuity

23、and that is bound by limits representing an obstacle for the dissemination of any perceptible effect outside the system 2.2 archive data data stored to keep knowledge about an object for a given period of time 2.3 attribute characteristic of an object or entity ISO/IEC 11179-1 2.4 calculated data da

24、ta established from calculations carried out to reach different goals: forecast, simulation, design, etc. 2.5 concept unit of thought constituted through abstraction on the basis of characteristics common to a set of objects 2.6 data representation of facts, concepts, or instructions in a formalized

25、 manner, suitable for communication, interpretation, or processing by humans or by automatic means 2.7 data element unit of data for which the definition, identification, representation, and permissible values are specified by means of a set of attributes ISO/IEC 11179-1 EN 14968:2006 (E) 6 2.8 data

26、 element dictionary information resource that lists and defines all relevant data elements 2.9 data interchange process of sending and receiving data in such a manner that the information content or meaning assigned to the data is not altered during the transmission 2.10 data length maximum size giv

27、en in a number of characters 2.11 data producer private or public entity in charge of data production and responsible for the validity of these data when they are published 2.12 data model description of the organization of data in a manner that reflects an information structure NOTE See Annex A. 2.

28、13 data type format used for the collection of letters, digits, and/or symbols, to depict values of a data element, determined by the operations that may be performed on the data element 2.14 definition statement that expresses the essential nature of a data element and permits its differentiation f

29、rom all other data elements 2.15 entity any concrete or abstract thing of interest, including associations among things 2.16 information (in information processing): knowledge concerning objects, such as facts, events, things, processes, or ideas, including concepts, that within a certain context ha

30、s a particular meaning 2.17 metadata data that defines and describes other data ISO/IEC 11179-1 2.18 object any part of the conceivable or perceivable world 2.19 real time data data generally taken from devices for the immediate knowledge of a phenomenon state EN 14968:2006 (E) 7 3 File structure fo

31、r data interchange The data included in the directories presented in Clauses 6 and 7 can be used with any method for data interchange. Any file format can be used to exchange data according to this standard provided that it has no impact on the data structure and the semantics described in the follo

32、wing clauses. 4 Piezometric concepts 4.1 Piezometric time series 4.1.1 General Piezometric time series are a record of the groundwater level over time. They associate a date to the groundwater level at a given moment. Depending on the variability of the groundwater level, measurements will be more o

33、r less frequent over a period of time. The groundwater level measurements shall be positive or negative according to the measurement point (see Figure 1). Measurements are negative when the groundwater level rises above the measurement point (as with an artesian well), and positive in all the other

34、cases. 4123Key 1 height (-) 2 level zero 3 depth to groundwater level (+) 4 measurement point Figure 1 Qualification of the groundwater level measurements 4.1.2 Type of time series 4.1.2.1 General The groundwater level is measured with discontinuous or continuous time series. EN 14968:2006 (E) 8 4.1

35、.2.2 Discontinuous time series Discontinuous time series are sets of level measures observed with or without any specific frequency (see Figure 2). 12Key 1 time 2 depth to groundwater level Figure 2 Discontinuous time series With this kind of time series, the evolution of the groundwater level betwe

36、en two measures is unknown. Figure 3 shows that measures (example A) conceal two radically different evolutions (examples B and C) of the groundwater level. 121221Example A Example B Example C Key 1 time 2 depth to groundwater level Figure 3 Elevation of the groundwater level between measurements EN

37、 14968:2006 (E) 9 Piezometric measurements shall be made with a sensor. If the sensor does not operate for a shorttime, e.g. sensor breakdown, or if the result has no meaning, at least one piezometric measurement will be missing. In such a case, the missing data shall be identified because there is

38、no continuous series for the measure preceding this missing data and the measure coming after. 4.1.2.3 Continuous time series The groundwater level is known at any moment during the period covered by the continuous time series. Indeed, continuous time series are curves resulting from a permanent mea

39、surement of the groundwater level. Time series shall be obtained by using graphical or electronic devices. 4.1.3 Time series presentation Each time series is represented by a set of points in succession over time. Each point represents the groundwater level at a given moment. Points represent the me

40、asures of discontinuous time series or the curve inflection point of the continuous time series. To indicate the continuity between two points as shown in Figure 4, each point may be linked to the preceding point. If a point is not linked, it is the first point of a new sequence in the time series.

41、The presence of an initial point therefore indicates that data were not available for the preceding period. 32451Key 1 initial points 2 depth 3 time 4 current points 5 discontinuity Figure 4 Continuous time series presentation 4.1.4 Validation of the measurements The validity of each measurement is

42、described according to the type of measurement method used. Four scenarios are possible: a) Impossible to validate; EN 14968:2006 (E) 10 b) Valid; c) Suspect ; d) Not valid ; By default, all values are specified as Not validated yet. The operator shall then assign one of the above- mentioned qualifi

43、cations after examination. A measurement is validated when the producer believes that the data and all the different procedures used to produce them comply with the monitoring protocol. A measurement is not valid when the producer believes that the data or the procedures used to produce them do not

44、comply with the measurement protocol. A measurement is “Impossible to validate“ when the operator does not have the information available to determine the validity of the data production according to the measurement protocol ( e.g. historical data from archives). 4.2 Piezometer station 4.2.1 General

45、 A piezometer is one method of measuring the piezometric height at a point within an aquifer system. It indicates the pressure at this point, enabling the observer to record the phreatic level or pressure. In the data interchange, only the depths to groundwater level of a piezometer are exchanged. A

46、ccording to the scope of this standard, the concept of “piezometer“ is extended to all artificial structures (well, borehole, gravel-pit) or natural structures (swallow, hole, grottos) which enables the groundwater level to be measured. Each piezometer shall have a unique code given by the country w

47、here it is located. 4.2.2 Key features of a piezometer 4.2.2.1 General Each piezometer has two key features: the level measurement point and the altitude benchmark measurement point as shown in Figure 5. EN 14968:2006 (E) 11 162345Key 1 plinth 2 level measurement point 3 altitude of surface in relat

48、ion to the national altitude reference system 4 depth to groundwater level 5 groundwater level 6 altitude benchmark point Figure 5 Key features of a piezometer 4.2.2.2 Level measurement point The level measurement point is the location on the piezometer used as a marker to measure the depth of the g

49、roundwater level (for example: the side of the tube of the borehole, the edge of the well, the reference ground level on a gravel-pit, etc.). The level measurement point is 0, which is the basis for all depth measures. It applies to all measurement points. The real height is defined by using benchmark points. 4.2.2.3 Altitude benchmarks Altitude benchmark points are used to compare data from all the piezometers in an aquifer system in order to determine the groundwater level of the system. Three main locations are generally used to establish an altitude

展开阅读全文
相关资源
猜你喜欢
  • CECS 13-2009 Standard test methods for fiber reinforced concrete《纤维混凝土试验方法标准 》.pdf CECS 13-2009 Standard test methods for fiber reinforced concrete《纤维混凝土试验方法标准 》.pdf
  • CECS 130-2001 Standard for coagulation-flocculation and sedimentation beaker test method《混凝沉淀烧杯试验方法》.pdf CECS 130-2001 Standard for coagulation-flocculation and sedimentation beaker test method《混凝沉淀烧杯试验方法》.pdf
  • CECS 131-2002 Technical specification for buried steel skeleton polyethylene fuel gas pipeline engineering《埋地钢骨架聚乙烯复合管燃气管道工程技术规程》.pdf CECS 131-2002 Technical specification for buried steel skeleton polyethylene fuel gas pipeline engineering《埋地钢骨架聚乙烯复合管燃气管道工程技术规程》.pdf
  • CECS 132-2002 Technical specification for application of multi-function control valve for pumping systems of water and wastewater engineering《给水排水多功能水泵控制阀应用技术规范》.pdf CECS 132-2002 Technical specification for application of multi-function control valve for pumping systems of water and wastewater engineering《给水排水多功能水泵控制阀应用技术规范》.pdf
  • CECS 134-2002 Specification for design of hot water supply with hurning oil and gas hot water heater《燃油、燃气热水机组生活热水供应设计规程》.pdf CECS 134-2002 Specification for design of hot water supply with hurning oil and gas hot water heater《燃油、燃气热水机组生活热水供应设计规程》.pdf
  • CECS 135-2002 Technical specification for extra-thin-wall stainless steel and plastic composite pipeline engineering of building water supply《建筑给水超薄壁不锈钢塑料复合管管道工程技术规程》.pdf CECS 135-2002 Technical specification for extra-thin-wall stainless steel and plastic composite pipeline engineering of building water supply《建筑给水超薄壁不锈钢塑料复合管管道工程技术规程》.pdf
  • CECS 136-2002 Technicalspecification for chlorinated poly (vinyl choride)pipline engineering of building water supply《建筑给水氯化聚氯乙烯(PVC-C)管管道工程技术规程》.pdf CECS 136-2002 Technicalspecification for chlorinated poly (vinyl choride)pipline engineering of building water supply《建筑给水氯化聚氯乙烯(PVC-C)管管道工程技术规程》.pdf
  • CECS 137-2015 Specification for structural design of reinforced concrcte sinking well of water supply and sewerage engineering《给水排水工程钢筋混凝土沉井结构设计规程》.pdf CECS 137-2015 Specification for structural design of reinforced concrcte sinking well of water supply and sewerage engineering《给水排水工程钢筋混凝土沉井结构设计规程》.pdf
  • CECS 138-2002 Specification for structural design of reinforced concrete water tank of water supply and sewerage engineering《给水排水工程钢筋混凝土水池结构设计规程》.pdf CECS 138-2002 Specification for structural design of reinforced concrete water tank of water supply and sewerage engineering《给水排水工程钢筋混凝土水池结构设计规程》.pdf
  • 相关搜索

    当前位置:首页 > 标准规范 > 国际标准 > 其他

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1