1、Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NACA -: .I$, .-. By Roberk 3. Nuber and Stanley M. Gottlieb SUMMARY An investigation was made of an NACA 65006 airi”oi1 equipped with high-lift devices consisting of a 0.15-chord drooped-nose flap and a
2、 0.20-chord,piin tragling-edge flap. pitching-moment, and drag characteristics obtained at high Reynolds numbers and low Mach numbers individually and simultaneously are presented. The th2 development Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-2
3、 NACA RM No. 706 of means to increase the naturally low maxbutn lift of these profiles in order to ob4ain satisfactory low-speed characteristics. The results of aa investigation to determine the low-speed characteristics of two symmetrical circular-arc airfoils, 6 and 10 percent thick, equipped with
4、 leading-edge and trailing-edge flaps, are presented in reference 1. NACA 6-series airfoils have lower drag in the transonic speed range than circular-arc airfoils. made to furnish the lift, drag, and pitching-momsnt characteristic8 of an NACA 65006 airfoil with the 0.20-chord plain trailing-edge fl
5、ap and the 0.15-chord drooped-nose flap deflected individually and in appropriate combinations for comparison with the circular-arc airfoil sections. These tests were made in the Iangley two-dimensional low- turbulence tunnel, a variable-density wind tunnel which enables both the Reynolds number and
6、 Mach number appropripte to the landing condition for a typical airplane to be approximated simhtaneously. Recent data indicate that thin The present investigation was therefore COEFFICIENTS AM SYMBOLS Cd /4 %.C * where 2 d m C 90 QO c$J section lift coefficient ($3 section drag coefficient section
7、pitching-moment coefficient about the quarter section pitching-moment coefficient about the aerodynamic center cs) lift per unit span drag per unit span pitching moment per unit span chord of airfoil with flaps neutral c* free -stream dynamic pressure free-stream mass density Provided by IHSNot for
8、ResaleNo reproduction or networking permitted without license from IHS-,-,-NACA RM No. 706 3 free-stream velocity uO 6 section angle of attack, degrees flap deflection, degrees, positive when deflected below chord line R Reynolds number increment of section angle of attack at maximm lift due to flap
9、 deflection Ac increment of maximum section lift coefficient due to flap bax deflection Subscripts : N drooped-nose flap F plain trailingredge flap MODEL The model used in this investigation was a 24-inch chord NACA 63006 airfoil equipped with a 15-percent chord drooped-nose flap and a 20-percent ch
10、ord plain trailing-edge flap. photographs of the model are presented in table I and figures 1 and 2, respectively. with the lower surface. were used to facilitate setting the deflection qf the flaps. was designed so that plain trailing-edge flap deflections % up to ?go and drooped-nose flap deflecti
11、ons % obtainsd. flap skirt in rubbing contact with the flap. Ordinates and Both flaps were pivoted on leaf hinges mounted flush Model end plates, as shown in figure l(a), The model up to 47O could be The flaps were sealed at the hinge lim by having the The model surfaces were finished with number 4-
12、00 carborundum paFer; slight discontinuities, howsver, existed at the leaf hinges on the lower surface and at the line of contact between the flaps and. flap skirts. The tests were made in the Lancley two-dimemionel low-turbulence The tests included measummnts of lift and pitching pressure tunnel. P
13、rovided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-4 NACA RM No. 706 moment at a Reynolds number of deflected either individually or in conjunction with one another. addition, the lift characteristics were obtahed at Reynolds numbers of 3.0, 9.0, 14.0, a
14、nd 18.0 x lo6 with the flaps neutral and with the drooped-nose and plain trailing-edge flaps deflected simultansously to 280 and ?go, respectively. 6.0 x lo6 with the high-lift devices In Drag measurements for the flaps neutral condition were obtained at Reynolds numbers of 3.0, 6.0, and of the drag
15、 characteristics was conducted at a Reynolds number of 6.0 x lo6 with the drooped-nose and plain trailing-edge flaps deflected as low-drag control fla2s. deflected both individually or in appropriate combinations through a range of deflections from OO to 20. 9.0 x lo6* A further investigation For th
16、ese tests, the high-lift devices were At Reynolds numbers of 3.0, 6.0, and 9.0 x lo6 the Mach numbers were 0.12 and 0.14, the Mach number was substantially constant at 0.10. 14.0 x lo6 and 18.0 x lo6 respectively. obtained and corrected to free air conditions by the methods described in reference 2.
17、 At Reynolds numbers of The airfoil lift, drag, and pitching-moment data were RESULTS AND DISCUSSION Plain airfoil.- The section aerodynamic characteristics of the NACA 65006 airfoil with the flaps neutral are presented in figures 3 and 4. The maximum section lift coefficients remin approxlmately 9.
18、0 x 100 constant at 0.78 for Reynolds numbers of 3.0, 6.0, and whereas a favorable scale effect exists for Reynolds numbers above 9.0 x lo6 which increases the maximum section Lift coefficient to a value of 0.85 at a Reynolds number of 18.0 x 106. At Reynolds numbers of 3.0, 6.0, and 9.0 x lo6, it i
19、s believed that the small leading- edge radius the mer as OCCUTB with a sharp leading edge. number is increased, the round nose becomes effective and the sm type of scale effect on the maxim section lift coefficient is observed on this airfoil as is observed on airfoils with larger leading-edge radi
20、us at lower Reynolds numbers. The jogs in the lift curve which originate at angles of attack of *5O, corresponding to a Reynolds number of 6.0 x 10 6 , number is increased. These jogs in the lif$ curves may be the result of the formation of a small local region of separated flaw near the leading edg
21、e as discussed in reference 3. of the NACA 63006 airfoil causes separation much in As the Reynolds tend to move to higher angles of attack as the Reynolds Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NACA RM NO. 706 5 The slope of the lift curves
22、remains approximately constant s the Reynolds number is increased from 3.0 x 106 at 0.106 in the lift curve occurs near zero lift. to 18.0 x 10 8 At a Reynolds nmber of 3.0 x lo6 a slight discontinuity The quarter-chord pitching-mwnt data indicate that the aero- dynamic center is located at the quar
23、ter-chord point of the airfoil. As is usually the case when an airfoil stalls, the center of pressure of the NACA 65006 airfoil moves toward the rear and the quarter- chord moment coefficient increases negatively. The minimum section drag coefficient remains approximately constant with increasing Re
24、ynolds number. At moderate lift coef- ficients, the variation in drag coefficient with Reynolds number is tnical of that obtained on most NACA 6-series airfoils; however, at lift coefficients between 0.5 and 0.6 the u“ 0 cd 3 m w 0 4 !3 k w h W cd ak 2 Y o? 0 0 Provided by IHSNot for ResaleNo reprod
25、uction or networking permitted without license from IHS-,-,-Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-L NACA RM No. L7K06 17 Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-Provided by IHSNot fo
26、r ResaleNo reproduction or networking permitted without license from IHS-,-,-NACA RM No. L7K06 19 0 Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-20 NACA RM No. L7K06 I Provided by IHSNot for ResaleNo reproduction or networking permitted without li
27、cense from IHS-,-,-NACA RM No. L7K06 21 Section angle of attack, (Lo, deg Figure Section lift and itching-moment characteristics of an NACA $ %, 00; &;ob Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-22 NACA RM No. L7K06 Section angle of attack, (I
28、o, deg Figure 6 .- Section lift and pitching-moment characteristics of an NACA 65006 airfoil for various def_le_ctions Of the 0.15-chord drooped-nose flap; a, 0”; R, 6 x lo6. Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NACA RM No. L7K06 23 8 4 0
29、-4 -E 0 20 60 Flap deflection, eU, bF, deg Figure 7 .- Variation of the increment in maximum section lift coefficient and angle of stall with defzection of the droop d-nose and plain flaps on an NACA 65006 airfoil; R, 6 x io . 8 Provided by IHSNot for ResaleNo reproduction or networking permitted wi
30、thout license from IHS-,-,-24 NACA RM No. L7K06 c 0 8 d P 0 m . P rl 0 4 91 0 t c Section angle of attack, ao, deg Figure .- Section lift and pitching-moment chaRsotg.lstlCs of an NACA f5A006 airfoil for various deflections of the drooped-nose and plain flaps; R, 6 x lo6. Provided by IHSNot for Resa
31、leNo reproduction or networking permitted without license from IHS-,-,-NACA RM No. L7K06 25 Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-26 NACA RM No. L7K06 8 r( m rn Section lift coefficient, c% Figure f0.- Section lift and drag characteristics
32、of fin NAOA 6p006 airf il for various deflections of the drooped-nose and plain flaps; R, 6 x d. Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NACA RM No. L7K06 27 =? E? 0 rl 9-1 0 0 2 Sbection angle of attack, a*, deg FigureJd .- Section lift and
33、pitching-xnoment characteristics of an NACA and plain flaps; 5AOO6 airfoil for various deflections of the drooped-nose R, 6 x lo6. Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-28 NACA RM No. L7K06 Section angle of attack, (Lo, dag Figure 12.- Comparative lift and pitching-moment characteristics of an NhCA 65hOO6 and an NACA 25-(50)(03)-(50)(03) airfoil equipped with sMlar high-lift devices. R, 6 x lo6. Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-