1、专题二 功和能 动量,考点1 功和功率 动能定理,高考定位 1考查内容 (1)正负功的判断、功和功率的计算。 (2)机车的启动问题。 (3)动能定理的应用。 2题型、难度 选择题、计算题、难度中档。,体验高考 1(2017全国卷)如图211所示,一光滑大圆环固定在桌面上,环面位于竖直平面内,在大圆环上套着一个小环,小环由大圆环的最高点从静止开始下滑,在小环下滑的过程中,大圆环对它的作用力,图211,A一直不做功 B一直做正功 C始终指向大圆环圆心 D始终背离大圆环圆心,解析 大圆环光滑,则大圆环对小环的作用力总是沿半径方向,与速度方向垂直,故大圆环对小环的作用力一直不做功,选项A正确,B错误;
2、开始时大圆环对小环的作用力背离圆心,最后指向圆心,故选项C、D错误;故选A。 答案 A,2(多选)(2016全国卷)如图212所示,一固定容器的内壁是半径为R的半球面;在半球面水平直径的一端有一质量为m的质点P。它在容器内壁由静止下滑到最低点的过程中,克服摩擦力做的功为W。重力加速度大小为g。设质点P在最低点时,向心加速度的大小为a,容器对它的支持力大小为N,则,图212,答案 AC,3(2015全国卷)一汽车在平直公路上行驶。从某时刻开始计时,发动机的功率P随时间t的变化如图213所示。假定汽车所受阻力的大小f恒定不变。下列描述该汽车的速度v随时间t变化的图线中。可能正确的是,图213,答案
3、 A,4(2014全国卷)一物体静止在粗糙水平地面上。现用一大小为F1的水平拉力拉动物体,经过一段时间后其速度变为v。若将水平拉力的大小改为F2,物体从静止开始经过同样的时间后速度变为2v。对于上述两个过程,用WF1、WF2分别表示拉力F1、F2所做的功,Wf1、Wf2分别表示前后两次克服摩擦力所做的功,则,AWF24WF1,Wf22Wf1 BWF24WF1,Wf22Wf1 CWF24WF1,Wf22Wf1 DWF24WF1,Wf22Wf1,答案 C,考点一 功和功率的计算,例1 质量为m2 kg的物体沿水平面向右做直线运动,t0时刻受到一个水平向左的恒力F,如图214甲所示,此后物体的vt图
4、象如图乙所示,取水平向右为正方向,g取10 m/s2,则,图214,A物体与水平面间的动摩擦因数为0.5 B10 s末恒力F的瞬时功率为6 W C10 s末物体在计时起点左侧4 m处 D010 s内恒力F做功的平均功率为0.6 W,答案 D,【题组训练】 1(多选)(功和功率的计算)一质量为1 kg的质点静止于光滑水平面上,从t0时起,第1 s内受到2 N的水平外力作用,第2 s内受到同方向的1 N的外力作用。下列判断正确的是,答案 AD,2(多选)(功、功率与运动图象的结合)(2018德州二模)一滑块在水平地面上沿直线滑行,t0时速率为1 m/s,从此刻开始在与速度平行的方向上施加一水平的作
5、用力F,力F和滑块的速度v随时间的变化规律分布如图215甲、乙所示(力F和速度v取同一正方向),g10 m/s2,则,图215,A滑块的质量为1.0 kg B滑块与水平地面间的动摩擦因数为0.5 C第2 s内力F的平均功率为1.5 W D第1内和第2 s内滑块的动量变化量的大小均为2kgm/s,答案 CD,考点二 机车启动问题,图216,2恒定加速度启动 速度图象如图217所示。机车先做匀加速直线运动,当功率达到额定功率后获得匀加速运动的最大速度v1。若再加速,应保持功率不变做变加速运动,直至达到最大速度vm后做匀速运动。,图217,图218,A汽车所受阻力为2103 N B汽车车速为15 m
6、/s时功率为3104 W C汽车匀加速的加速度为3 m/s2 D汽车匀加速所需时间为5 s,答案 AD,【题组训练】 1(多选)(2018佛山二模)汽车以一定的初速度连续爬两段倾角不同的斜坡ac和cd,在爬坡全过程中汽车保持某恒定功率不变,且在两段斜面上受到的摩擦阻力大小相等。已知汽车在经过bc段时做匀速运动,其余路段均做变速运动。以下描述该汽车运动全过程vt图中,可能正确的是,图219,解析 若汽车刚上斜坡时速度较小,由PFv可知,牵引力较大、汽车做加速度减小的加速运动,合力为零时做匀速运动。进入cd斜面部分,再次做加速度减小的加速运动,B选项正确。若汽车刚上斜坡时速度较大,则牵引力较小,其
7、合力沿斜坡向下,汽车做加速度减小的减速运动。合力为零时匀速运动,进入cd部分做加速度减小的加速运动,故C正确。 答案 BC,2(多选)(2018衡阳联考)一辆汽车在平直的公路上运动,运动过程中先保持某一恒定加速度,后保持恒定的牵引功率,其牵引力和速度的图象如图2110所示。若已知汽车的质量m、牵引力F1和速度v1及该车所能达到的最大速度v3,运动过程中所受阻力恒定,则根据图象所给的信息,下列说法正确的是,图2110,答案 ABD,【必记要点】 1对动能定理表达式WEkEk2Ek1的理解 (1)动能定理表达式中,W表示所有外力做功的代数和,包括物体重力所做的功。 (2)动能定理表达式中,Ek为所
8、研究过程的末动能与初动能之差,而且物体的速度均是相对地面的速度。,考点三 应用动能定理解决综合问题,2应用动能定理解题应注意的三点 (1)动能定理往往用于单个物体的运动过程,由于不涉及加速度及时间,比动力学研究方法要简捷。 (2)动能定理表达式是一个标量式,在某个方向上应用动能定理是没有依据的。 (3)物体在某个运动过程中包含有几个运动性质不同的过程(如加速、减速的过程),此时可以分段考虑,也可以对全过程考虑,但如能对整个过程利用动能定理列式,则可使问题简化。,考向1 动能定理在力学中的综合应用 例3 如图2111所示,倾角45的粗糙平直导轨AB与半径为R的光滑圆环轨道相切,切点为B,整个轨道
9、处在竖直平面内。一质量为m的小滑块(可以看作质点)从导轨上离地面高为h3R的D处无初速度下滑进入圆环轨道。接着小滑块从圆环最高点C水平飞出,恰好击中导轨上与圆心O等高的P点,不计空气阻力,已知重力加速度为g。求:,图2111,(1)滑块运动到圆环最高点C时的速度大小。 (2)滑块运动到圆环最低点时对圆环轨道压力的大小。 (3)滑块在斜面轨道BD间运动的过程中克服摩擦力做的功。,审题探究 1滑块从C点到P点做什么运动?其水平位移和竖直位移分别是多少? 2滑块从圆环轨道最低点运动到C点,有哪些力做功?满足什么规律? 3滑块在B点的速度是否已知?能否研究从D到最低点的过程或从D到C的过程求DB段克服
10、摩擦力的功?,图2112,(1)小球第一次到达B点时的动能; (2)小球返回A点前瞬间对圆弧杆的弹力。(结果用m、g、R表示)。 审题探究 (1)小球从A到B的运动过程,受几个力作用力?有什么力做功? (2)小球从A到C有什么力做功?如何求摩擦力的功?从C返回到A,又有什么力做功?如何求小球返回到A点时的速度?,规律总结 应用动能定理的一般步骤 1明确研究对象和研究过程 研究对象一般取单个物体,通常不取一个系统(整体)为研究对象。研究过程要根据已知量和所求量来定,可以对某个运动阶段应用动能定理,也可以对整个运动过程(全程)应用动能定理。 2分析物体受力及各力做功的情况 (1)受哪些力? (2)
11、每个力是否做功? (3)在哪段位移哪段过程中做功?,【题组训练】 1(多选)(利用动能定理分析曲线运动)(2018龙岩二模)如图2113所示,一个半圆形轨道置于竖直平面内。轨道两端A、B在同一水平面内。一个质量为m的小物块,第一次从轨道A端正上方h高度处由静止释放,小物块接触轨道A端后,恰好沿着轨道运动到另一端B。第二次从轨道A端正上方2h高度处由静止释放。下列说法中正确的是,图2113,A第一次释放小物块,小物块克服轨道摩擦阻力做功等于mgh B第一次释放小物块,小物块克服轨道摩擦阻力做功小于mgh C第二次释放小物块,小物块滑出轨道后上升的高度等于h D第二次释放小物块,小物块滑出轨道后上
12、升的高度小于h,解析 根据功能定理可以知道,第一次从h处静止释放,在到达B点过程中,重力做功,摩擦力做功,所以摩擦力做功大小等于mgh,选项A正确;因为下滑过程中滑动摩擦力是变力做功,滑动摩擦力大小与正压力大小有关,正压力大小与速率有关,所以第二次摩擦力做的功大于第一次,最终小物块滑出轨道后上升高度小于h,选项D正确。 答案 AD,2(动能定理在电学中的应用)(2018湖南五市十校联考)如图2114所示,BCD为固定在竖直平面内的半径为r10 m圆弧形光滑绝缘轨道,O为圆心,OC竖直,OD水平,OB与OC间夹角为53,整个空间分布着范围足够大的竖直向下的匀强电场。从A点以初速v09 m/s沿AO方向水平抛出质量m0.1 kg的小球(小球可视为质点),小球带正电荷q0.01 C,小球恰好从B点沿垂直于OB的方向进入圆弧轨道。不计空气阻力。求:,图2114,(1)A、B间的水平距离L; (2)匀强电场的电场强度E; (3)小球过C点时对轨道的压力的大小FN; (4)小球从D点离开轨道后上升的最大高度H。,答案 (1)9 m (2)E20 N/C (3)FN4.41 N (4)H3.375 m,