NAVY MIL-STD-2052 A-1997 FIBER OPTIC SYSTEMS DESIGN《光纤系统设计》.pdf

上传人:roleaisle130 文档编号:982384 上传时间:2019-03-12 格式:PDF 页数:69 大小:2.48MB
下载 相关 举报
NAVY MIL-STD-2052 A-1997 FIBER OPTIC SYSTEMS DESIGN《光纤系统设计》.pdf_第1页
第1页 / 共69页
NAVY MIL-STD-2052 A-1997 FIBER OPTIC SYSTEMS DESIGN《光纤系统设计》.pdf_第2页
第2页 / 共69页
NAVY MIL-STD-2052 A-1997 FIBER OPTIC SYSTEMS DESIGN《光纤系统设计》.pdf_第3页
第3页 / 共69页
NAVY MIL-STD-2052 A-1997 FIBER OPTIC SYSTEMS DESIGN《光纤系统设计》.pdf_第4页
第4页 / 共69页
NAVY MIL-STD-2052 A-1997 FIBER OPTIC SYSTEMS DESIGN《光纤系统设计》.pdf_第5页
第5页 / 共69页
点击查看更多>>
资源描述

1、NOT E: MIL-ST D-2052 has been redesignated as a Desi gn Criteria Sta ndard. T he cover page has been cha nged fo rAd mi nistrati ve reasons. T here are no other change s to thi s Document.MIL-ST D-2052A10 October 1997SUP ERSEDINGMIL-ST D-2052(SH)21 AP RIL 1994AMSC N/A FSC 60GPDISTRIBUTION STATEMENT

2、A. Approved for public release; distribution isunlimited.MET RICDEPARTMENT OF DEFENSEDESIGN CRITERIA STANDARDFIBER OPTIC SYSTEMS DESIGNProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-HIL-STD-2052A(SH)FOREW3SD;,OEPARTflENT OF TNE NAVYNAVAL SEA SYSTEHS C

3、0til!J4N0ASLINGTON, VA 22242-51601. Th 18 Department of Oef ense d.asIgn cr 1ter i a standard Is approved for use by the Nava I SoaSystems Sommand, Department of tha Navy, and Is ava I I ab I e for .a. by a I I 00 PWtMOntS and A.aenc 1e ofthe Department of Def arise.2. Eenef ic i a I comments (rocoa

4、!endat Ions, add i t I ons, de I et I ens) and any pert I nent data VIII ch MSYbe of use I n I a75prov i ng this document shou I d be addressed to: Commander, Nava I See Syateas timmand.SEA E3J2, 2531 Jefferson Dav Is thy., Ar I I ngton, VA 22242-5160 by us I ng the Standard zat I on OocumentImprove

5、ment Pr.aposa I (OD Form 1426) appear I ng at the end of this document or by I etter.3. This design crlterla standard provides detai led Information, wldel ines, procedures andrequirements for selectlng and using fiber optic co.%ponents to transmit fiber optic signals in NaVYsystems. Tn Is standard

6、practice ldent i f lea the cons I de.rat i ons used in the se I ect I on of the SPeC i f ICNavy f I ber optic components and the performance of these compo”e”ts in the surface sh I p and submarine env I rancmnts. In eddltlon. this standard nractice orovides detai led exDlnnatiom of the f Iber optics

7、ystem des I gn procedures.,. .iiProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-PARAGRAPH2.2.12.22.2.12.32.43.3.13.1,13,1.23.1.33.43.1.53.t. e3.3.73.1.83.23.34.4.14.24.2,34.2.24.2.34.2,44.2.54.2.64.2,74.2.84.2.94.34.3. i tter Tranafar Fuoct I on Measur

8、ement.GutPut J i ttar Measurement.Sy8tat ic J Itter Gene.rat I on Hess.rement.(APP I i Cat 1.n fOr COPi os 8hou Id be addressed to the E IA!TIA, EII.Gi ne=ar I ng D.part.e”t, 2001Pennsy I van is Avenue, Washington, W, 20026. )(No Government standards and other pub I Icat 1s are norms I I y avail ab

9、I e from the organ izmt ionsthat prepare or d 1str I bute the documents. TTiese docummts e I so may be sva I I ab I e in or throughI Ibraries or othar informational services. )3,.:Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-MIL - STD - 2052A(SH) 2.

10、4 Order of precedence . In the event of conflict between the text of this document and the reference cited herein, the text of this document takes precedence. Nothing in this document, however, shall supersede applicable laws and regu lations unless a specific exemption has been obtained. 4 Provided

11、 by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-nlL-sTO-205zA(sH)3. DEFINITIONS3.1 Genernl fiber ootlcs te rms. Oeflnitlons for the fiber optic terms used in this stsmdardare i“ accordance with El A-44Q-A Fiber Optic Termlnoioay. Definitions for gsnare.1 tslac

12、ommun icationsterms used In this standard are In accordance with FEO-STO.4Q37 Glossary of Telecommunlcatlons Terms.Oeflnitons for other terms es they are used In this standard are given in the following perngraphs.3,1.1 Cable tren I ent 0s% The difference between the totat cable attenuation for an.a

13、verfll lad launch and thostotal cabie attemmtlo” for a restricted launch along the Ianoth of thecable.3.1.2 Fall.re ratQ. The expected number of failures of n component or link In a given timoperiod. The failure rate is represented by A.3.1.3 Fiber I=able exit bendwldth. The value mmerically equal t

14、o the lowest frequency atwhich tha magnitude of the modulation transfer function of the .xmblnstlon of the eptlcal source andoptical fiber decreases to ono-half of the zero frequmcy value.3.1.4 Fi ber oDtlc cable olant (FOCP1. The fiber optic cable plant”is the portion of thefiber optic topology mad

15、e up of the trunk cables and Interconnsctlon boxes.3.1.5Flb r .Dtic c ble toRQ.h?9Y The fiber optic cabls topology consists of fiber opticI“tat-ec,nnect i.ar. bI:bl.bm.bn.bo .bpbqbr.bsbtbubvbwbx .by.IL.a“N.v,F.v.man connector I 0ssstandard de. I nt i on of the connector 10ssthe totnl number of SPI i

16、cesthe mean SPI Ice lossstandard deviat on of the up I Ice 10ssnumber of other pass I ve dov i CES of one typea73ean loss of other pass I ve de. ices of one typestandard dev i at Ion of the othor passive de. ices of one typesax i mum powor ava i Iabl e ,at the rece I verd Ispers Ion power penaltya75

17、ode part I t Ion no 1s0 pens I tytotal determinist Ic JitterInput determinist Ic j Ittertransm I tter deter. In I st I c j I tterf Iber deterministic j Itterrecelvar deterainist(c Jittertots I random j I tterInput random J i ttertransm I tter rnndom J I tterreca iver random j Itterflberlcable exit r

18、im time tots I output J i ttertemperature de.rat Ing factorqual 1ty dorat i no factorf I ber opt lc cnb I e, I I ght duty connector, heavy duty connector,single fiber splice, cable SPIICO, or optical switch. failureret e. . .ba4e opt I ca t f Iber f a75I lurO rateenv i ronmenta I derat Ing factornum

19、ber of fibers In the cablemat i ng i unmat ing derst i na factoraot I ve term i n I dorat ing factornumber of switch stats. .7. .Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-ltl L-STO-205ZA(SH)4. GENL sEwlsEM2im :, ;4.1 . This section provldea gener

20、al requirements for desinlng a fiber optic system.Gannral in fo?mat lo” for those link designers who my not be familiar with the pe.rformsnce details ofthe Naw standard fiber optic components and other commercially e.va)lable fiber optic comp.ments Isprovided n 4.2. Guldanca and requirements for the

21、 physical design of equlpmtmt with Inter”al fiberoptic Ilnks a“d axternsl fiber optic interfaces are given In 4.3 and 4.4.4.2 Qc,ti Cal fibers End fib .r ootlc .sc.mnonents.4.2.4 $lotlcsl flbec. Thl S aectlon provides a general comparison .3? several dlffarentstandard multlmodO fiber sizes. Since th

22、e optical fiber used In typical fiber optic links Is 1.cebled form, the Performance values diactmeed in this Sacticm are reprosentatlve of cabled ?Ibers andwill be explicitly noted as such.4.2.1.1 f%!structlon. lho basic strwturo of an optical fiber consists of a center corewhich 18 surrounded by an

23、 outer layer called the claddin (see figure 1). The core end claddingmaterials Ccmstitutn the light .guidln e.tr”ctura. The cladding material has a lower I“dax ofrefraction than that of the center care E2tarlcil to achieve internal reflection of the light rays.The cladding may be coated with .athar

24、matorlals (Qenerally pelymers) to provide physical pretectlo”,Increased product strength, sr isoiatkm from t.xterna! mechanical force8 and molst”r.a. Flbera coetad “.with this additional material are called buffered fibers. The Navy standard size for buffered fibers18 9Q0 micrometers (pm). For alngl

25、a a71de fiber, the core has a com.tant Index of refrectlo” over theentire core area. For multlmode flbar, the I“dox of refraction of the core glass may be comtent,(Step Index fibers) or may vary over the core area (graded index fibers). For graded Index multimodeoptical fibers, the c Iber 8 I z.as c

26、an ba summsr i zod as ahawn 1“ teb la t 1. .TheI Imlts ahoun In table I I sre typical valuea for cabled f Ibar performance. Several grades of fiberopt I c cab I es wI th d I f ferent attenuat I on rates and bandwl dth can be acqu i red from cab I e msnuf acturers.7he tylieal performance of the Navy

27、stmdard multimode optical f Iber may be dlfforent than the I ImitsI In tsblo 1I. Additional in fer-t ion on the re)ntlve performance of different multimode ?iber s12e8csn be found In 6.3a, b and c.TAELE I I . Ce I fiber 0erformanoe c.amDar I m.I Fiber SizeI . Attr 1butsse/f25 Pm 82.51f2s pm feeff4s

28、mSS3 rim 43ee see M 13oe nm S5S n, i3ee!nm n-Typical Csbled Fiber Attenuation(dellu)I “3.2 1.9 3.2 1.2 4.5 1 .sBend Sensitivity. Average east WorstTyplcsl Sabled Fiber ModalI Simdwl dth fiZ . km) 500 1“ f eee Ise 500 we 2eeAlignment Ssnstlvity and Input ,.Caupll.g Efflclency worst Good Oest. . .I9Pr

29、ovided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-.ilL-s70.2052A(sH)NoTE : hhen opt I ca I f I bars are manufactured, the I r bandwidth is a75essured rmd the f i hers sorted Intogroups (referred to as co I I e) based on the measured bam3wl dth. me f I ber

30、manufacturerwarrants that any product WI th In a ce I I w1I I meet the mln mum be.ndwl dth spec I f I ed for thatparticular cell. In many cases, the bn”dwldth specified for a cabled fiber is the a75inimum8pecif lad bandwidth for the bandwidth Gel I to which the f Iber belcmgad a“d may be lower thant

31、he actua I bandv i dth of the cab I ed f I bar. Sandwldth calculations (see section 5) based onfiber bandwidth cell a73inimum Speclflcations wil I yield conservntlve I ink bandwidthDredictlons.4.2. 1.3 Fiber ttrlbut es. lhero are 8 I x f i bar re I ated attr I butes vh i ch af f act systemperf orman

32、cb:. coup ! I ng off I c Iency to the opt I ca I source md detector, attenuat Ion rate, bendaens It ivlty. al I.anment 8ensltlvlty at f Ibar connections, chromatic dlsperalon and modal bandwidth.4.2.1 .3.4 AttwIuati OQ. The attenuation of a f Iber is a function of wavelength. Formultimode fiber I In

33、ks, operating wavel Ohs In the f Irst transmlsslo” window (8S0 t 50 nm) and thnsecond transmlsalon window (1300 t 50 nm) are typical Iy used. In single mde fiber links, operatingwavo I engths I n the second transmlsa I on window and the third transml ss I cm WI ndow (1550 i 50 nm) arotYPlcal IY used

34、. The second trans. 18s Ian wIndow is the standard window for Navy communI cat ion I i .ksfor either a75ultlmodo or single mode fiber. A typical spectral attenuation curve for a cabled fiber isnh.awn n fioure 3.It-.,7+1 Mumm0- SYW.mle.wftl.I“. ”.- .l ,.,.a.w.-*”*mmmFIGU 3. leal cab I ed Ovt 1CUI fib

35、er soectrml attenuation.I4.2.1 .3.2 Fiber . For cultl moda fiber, the fibar dlc.tort ion la a function of themodsI d I stc.rt Ion (rndal bandwidth), the chromat 10 disDar8 ion (see 5.4) and the source sPectral wldtl!.For single wde fib-r, *O flbor dlatortlon Is a function of the chromatic dispersion

36、 and the sourcespectra I width. The Chrowtlc dlspernlon of a mltlmodo flb4i has e zero dlspersl?n uavelangth In the13eE nm window (MO fl(kura 4). Tb8 Chrowtlc dlep.rnlon of a71 stwlsrd a71lngle wde flbor has a zerodispersl wav. I. in the mnd window betwa.n 1290 and 133e nm. Tho fiber dlttortion can

37、bea71lnlmlzod by doing ma or Wra of the followlng: Using m operating wavelength r.gion “eer this zbrochromatic diapar.lon point, mlnlnlzlng the cable Iongth, a71lnlmizlng the sourcs 8axlmum spectralwidth, or utll Izing a higher bandwidth fiber (sac 5.4) .4.2.1.4 . Optical flbarn used In Navy tactica

38、l applications shall be Inaccordance with ltl L. F.4e20$, HIL.F.4029flE ma ML.F.4g2ef /7. All multlmocfe flbere used In Navynontactlcal eppllcc.tlons shall bb 62.51125 IIm multlwde flbe,.4.2.2 ontie cablq. The dosipn of a flbar optic cable Influences optloal performanc.a,env ironmsntn I and a73echan

39、 lea I perfor9nnco, human factors, and safety The fol lwlno paragrnpha d 1SCU8Sthe Otructuro of four common emmerc Ial f Iber opt Ic cab I e dea i Ens and the benef i ta and drswbsoks ofeach of those designs. 7ha da. I g.= are tha RreskM., Stranded, Leone Tube and RI bban deei ons., 10Provided by IH

40、SNot for ResaleNo reproduction or networking permitted without license from IHS-,-t41L-STO-2Q5(SH).- 1.-“. ,n. .-,-0.”., W.w-let, mm)Cnb Ie cons.4.2.2 .4.1 Bre nkeut des_The prlnory exceptions are thi bending and watarblocking performance of the Ribbon Gable design endthe waterblocklng performance o

41、f both the Stranded and Loose Tube designs. Table Ill show thedynamic band per farmnce of the four csble designs. The Cable”s mlni9um dynanle bend diameter isequal to the cables out81do dla.aetar (M) a73ultipl ied by the factor given in table Ill. The Rlhboncable design has the greatest Ilultatlons

42、on bend performance of the four cable deslgnn. Currently,the Ribbon and Loose Tube cable doeigns unufactured commercially are not we.terblocked with suitablematerials (for example, nongreasy, nontacky, and so forth). The therms 1 and a75echan Ica I performance ofboth of these cab I e designs wou I d

43、 be ndvarsa IY affected by the use of appropr I ate coounds. The9tranded design cable is general Iy not watorb locked in commercial appl icatlons.TABLE Ill. Bend . rfoe rmmce of fi be, .Dti c cable deslans.Cable Oealgn Uinimu.n Oynami c Bend Diameter(Cabla 00 Hultlpller)Breakout (oF(%) .9Strendod Ot

44、olz”. .Loose Tube 12 to ZeRibbon 20I 4.2.2 .2.3 Human feotor n. The human factor e Iementa far the designs very wide Iy. The Pr nary,.area of concern for human factors la In the breskout of Indlvl dual fibers In the cable plantinterconnect ion boxes or eystem equ I pmento. The OFCC des i on 16 the m

45、ost su i tab lo for Navyapp I i Cat Ions because each f i bar Is protected WI th I n Its mm subcab I e. In the Stranded deo 10n, theIndtv Idua I f Ibers are more sut.cept lb Ie to sccldents I damage s Inca they are oat protected In an OFCC.1. the Loose Tube end Ribbon desians. tho Individual fibers

46、show a high susceptlbl I ity to damage whenbroken out of the tube or separat;d Trom the ribbon4 .2.2.3 Fiber Oe.ltles. Tne total fiber capacities for the various designs wary trldoly.The Loose Tube and Rlbb cab 1e d;s I gns heve tha Qreatest capeci t y, being ab 10 to ho Id over 2130 f I hersin a 0.

47、5 inch diameter cable. For the same s I ze cab 1e. the Stranded design can accommodateaPPrOx i Qat4 fly 48 f 1hers end the OFCC des I gn can accommodate, approx i mate IY 12 f i hers.4.2.2.4 A llcablllt. 8t.Cause of the ease of use and the high degree of ruggedness. theOFCC cab I e is current Iy tho

48、 standard Navy des I gn. OFCC cables are avai Iable with fiber counts offour, eight, twenty-four, thirty .threa and thirty-six fibers. Al I fiber optic cables used In Navyshipboard i ntorcompartnemt epp I i cations sha I I be i n accordance with HI L- C- S5845. The NAVSE4 F I berOpt I c Program Offi

49、ce shou I d be consu I ted to determ I no th: spec i f I cat I on sheets that are approved foruse. .“4.2.3 nnectorq. Connectors are conon Iy used at transai tter and rece Iver to oab ect I ons, equ Ipment connect ions and f Iber-to. f I ber connect Ions in Intorcomoct ion boxas.Connector* WY connect on IY one Pair of f I bars tooethar (o I no! * t

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 标准规范 > 国际标准 > 其他

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1