1、NASA/TP-1998-208705Overview of Laminar Flow ControlRonald D. JoslinLangley Research Center, Hampton, VirginiaNational Aeronautics andSpace AdministrationLangley Research CenterHampton, Virginia 23681-2199October 1998Provided by IHSNot for ResaleNo reproduction or networking permitted without license
2、 from IHS-,-,-Acknowledgment.,;The authors only intent in generating this overview was to summarize the available literature from a historicalprospective while making no judgement on the value of any contribution. This publication is dedicated to the manyscientists, engineers, and managers who have
3、devoted a portion of their careers toward developing technologies whichwould someday lead to aircraft with laminar flow.Special thanks to Anna Ruzecki and Dee Bullock for graphics services which led to the reproduced figures,Eloise Johnson for technical editing services, and Patricia Gottschali for
4、typesetting services. Gratitude is expressedto the following companies and reviewers of this manuscript or a portion of this manuscript: Scott G. Anders,Dennis M. Bushnell, Michael C. Fischer, Jerry N. Hefner, Dal V. Maddalon, William L. Sellers III, Richard A.Thompson, and Michael J. Walsh, Langley
5、 Research Center; Paul Johnson and Jeff Crouch, The Boeing Company;E. Kevin Hertzler, Lockheed Martin Corporation; and Feng Jiang, McDonnell Douglas Corporation.The use of trademarks or names of manufacturers in this report is for accurate reporting and does not constitute anofficial endorsement, ei
6、ther expressed or implied, of such products or _nanufacturers by the National Aeronautics andSpace Administration.Available from the following:NASA Center for AeroSpace Information (CASI)7121 Standard DriveHanover, MD 21076-1320(301) 621-0390National Technical Information Service (NTIS)5285 Port Roy
7、al RoadSpringfield, VA 22161-2171(703) 487-465OProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-ContentsTables vFigures . vAbbreviations and Symbols . ix1. Introduction . 12. Background 22.1. Definition of LFC 22.2. Benefits of LFC . 33. Laminar Flow
8、Control Design Methodology 63.1. Boundary-Layer Instability Issues . 63.2. Surface Tolerances for Laminar Flow 93.2.1. Waviness 123.2.2. Two-Dimensional Surface Discontinuities 133.2.3. Three-Dimensional Surface Discontinuities . 133.3. Critical Suction Parameters for LFC 143.4. Manufacturing Issues
9、 163.4.1. Joints . 163.4.2. Holes . 163.5. Transition Prediction Design Tool Methodology 173.5.1. Granville Criterion . 183.5.2. C1 and C2 Criteria . 183.5.3. Linear Stability Theory . 183.5.4. Parabolized Stability Equations Theory . 233.5.5. Transition Prediction Coupled to Turbulence Modeling 243
10、.5.6. Receptivity-The Ingestion of Disturbances . 243.5.7. Optimize Linear Design for LFC 253.5.8. Thermal LFC . 263.5.9. Advanced Prediction of Manufacturing Tolerances . 264. Laminar Flow Control Aircraft Operations 264.1. Insect Contamination 274.1.1. Paper Cover 294.1.2. Scrapers . 304.1.3. Defl
11、ectors 304.1.4. Fluidic Cover . 304.1.5. Thermal Cover 304.1.6. Relaminarization 304.1.7. Liquid Discharge 314.1.8. Flexible Surface or Cover . 314.2. Ice Accumulation and Atmospheric Particulates 324.2.1. Ice Accumulation 324.2.2. Atmospheric Particulates 334.3. Boundary-Layer Control for Takeoff a
12、nd Landing . 334.4. Operational Maintenance of Laminar Flow . 34.oo!1Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-5. Laminar Flow Control Prior to OPEC Oil Embargo . 355.1. B- 18 Slot-Suction Glove Flight Test (1941 ) 355.2. LFC Wind Tunnel Tests
13、(1949-1963) . 365.2.1. Wind Tunnel Test With Porous Bronze Airfoil 365.2.2. University of Michigan Slot-Suction Wind Tunnel Tests . 365.2.3. Douglas Slot-Suction Wind Tunnel Test . 375.3. Anson Mk. 1 Porous-Suction Flight Test (1948-1950) . 375.4. Vampire Porous-Suction Flight Test (1953-1954) . 375
14、.5. F-94A Slot-Suction Glove Flight Test (1953-1956) . 385.6. Later Subsonic Slot-Suction Wind Tunnel Tests (1958) 405.7. Supersonic Slot-Suction Wind Tunnel Tests (1957-1965) . 415.8. X-21A (WB-66) Slot-Suction Flight Test (1960-1965) . 436. Laminar Flow Control After OPEC Oil Embargo . 456.1. Boei
15、ng Research Wind Tunnel LFC Test (1977-1978) 466.2. Langley 8-Foot Transonic Pressure Tunnel LFC Wind Tunnel Test (1981-1988) . 466.3. Jetstar Leading-Edge Flight Test (1983-1986) 486.4. Cessna Citation HI Nacelle LFC Flight Test (1986) 496.5. Dassault Falcon 50 HLFC Flight Tests (1987-1990) . 506.6
16、. Boeing 757 HLFC Flight Test (1990-1991) 516.7. HLFC ONERA-CERT T2 Wind Tunnel Test (1991) . 526.8. HLFC Nacelle Demonstration Flight Test (1992) 536.9. NLF and LFC Nacelle Wind Tunnel Tests (1991-1993) . 536.10. VFW 614 HLFC Transonic Wind Tunnel Test (1992) . 546.11. European NLF and HLFC Nacelle
17、 Demonstrator Flighl Tests (1992-1993) 546.12. A320 Laminar Fin Wind Tunnel and Flight Test Progrzm (1993-1998) . 556.13. Langley 8-Foot Transonic Pressure Tunnel HLFC Wind Tunnel Test (1993-1995) 556.14. High-Speed Civil Transport (1986) 566.15. Supersonic LFC Quiet-Tunnel Tests (1987-1996) 576.16.
18、 F- 16XL Supersonic LFC Flight Tests (1989-1996) . 587. Concluding Remarks . 60Appendix A-Subsonic Natural Laminar Flow Research . 62Appendix B-Supersonic Natural Laminar Flow Research . 66References . 67Tables . 81Figures 84ivProvided by IHSNot for ResaleNo reproduction or networking permitted with
19、out license from IHS-,-,-TablesTable 1. Subsonic and Transonic LFC Wind Tunnel and Flight Experiments and MajorAccomplishments 81Table 2. Subsonic LFC Wind Tunnel and Flight Experiments and Major AccomplishmentsPrior to OPEC Oil Embargo (1970) 82Table 3. LFC Wind Tunnel and Flight Experiments and Ma
20、jor Accomplishments AfterOPEC Oil Embargo . 83FiguresFigure 1Figure 2.Figure 3.Figure 4.Figure 5.Figure 6.FigureFigureFigureFigureFigureFigureFigure 13.Figure 14.Figure 15.Figure 16.Figure 17.Figure 18.Figure 19.Figure 20.Figure 21.Figure 22.Figure 23. Overview of Laminar Flow Control Projects . 84C
21、oncepts and practical application . 85Aircraft drag breakdown . 86Predicted drag benefits of laminar flow on subsonic business jet . 86Benefits of LFC with range for subsonic aircraft 87Potential benefits of HLFC on advanced subsonic transport . 877. Potential benefits of HLFC on advanced supersonic
22、 transport 888. Benefits of SLFC on supersonic aircraft . 889. Cost of jet fuel to airline industry 8910. Sketch of Tollmien-Schlichting traveling wave 9011. Sketch of Taylor-Grrtler vortices over concave surface 9012. Sketch of crossflow vortices over swept wing . 91Effect of wind speed and wing sw
23、eepback on transition . 91Maximum transition Reynolds number with wing sweep 92Sketch of attachment-line flow . 92Devices used to prevent attachment-line contamination 93Effects of two-dimensional surface imperfection on laminar flow extend 94Typical permissible surface waviness 94Typical permissibl
24、e three-dimensional type of surface protuberances . 95Hole geometries and inlet region shapes Not drawn to scale . 95Transition location as function of average pressure gradient 96Transition location as function of turbulence level 97Illustration of neutral curve for linear stability theory . 98Figu
25、re 24. Amplification of four waves of different frequency to illustrate determinationof N-factor curve . 98Figure 25. Cessna 206 anti-insect flight test results 99Figure 26. Estimated LFC performance with ice particles in air . 102Figure 27. Validation of Hall criteria for impact of cloud particulat
26、e on laminar flow usingJetstar aircraft 103Figure 28. Pollution of atmosphere . 103Figure 29. Induction system for slot-suction BLC on NACA 35-215 test panel on B 18 wing 104Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-FigureLFCFigureFigureFigureF
27、igure30.Sketchof methodusedtoconstructpermeablesurfacesforNACA64A010airfoil. 10531.DESA-2airfoil modelandslot-suctioninducedvelocitydiscontinuities 10632.Sketchof Vampireporous-suctionLFCflighttestaircraft. 10733.F-94slot-suctionLFCflighttestaircraft 10834.Sketchof supersonicslot-suctionswept-wingmo
28、delstestedatAEDC. 109Figure35.Minimumdragandoptimumsuctionfor supersonicslot-suctionLFCswept-wingmodels,one-thirdturbulentflat-platedrag,andslot-suction*at-platemodeldrag. 109Figure36.X-21Aflighttestaircraft.(FromFowellandAntonatos1995.). 110Figure37.LaminarflowachievedduringX-21AflighttestforMachnu
29、mberof 0.7,altitudeof 40000ft, andchordReynoldsnumberof 20x 106,withextendedleadingedge 110Figure38.Swept-wingmodel,liner,andturbulentregionsfor TPTLFCexperiment 111Figure39.UppersurfacetransitionboundariesforMachnumbersof 0.261to0.826,chordReynoldsnumberof 10x 106,andfull suction. 111Figure40.Trans
30、itionlocationasfunctionof chordwiseextentof suctionforMachnumberof 0.82andchordReynoldsnumberof 15x 106. 112Figure41.CalculatedN-factorvaluescorrelatedwithtransitionlocationandamountofchordwisesuctionextentfor TPTLFCexperimentfor Machnumberof 0.82andchordReynoldsnumberof 10x 106 112Figure42.Jetstarl
31、eading-edgeflighttestaircraft 113Figure43.LockheedtestarticleonJetstaraircraft 113Figure44.DouglastestarticleonJetstaraircraft. 114Figure45.LaminarflowextentonDouglasperforated-suctiontestarticle.Machnumberandaltitudeareshownfor typicalflightwithJetstar 115Figure46.DassultFalcon50HLFCflightdemonstra
32、tor,instrtmentationpackage,glove,andleading-edgedesign. 116Figure47.ResultsfromFalcon50HLFCflighttest.Bump301)mmfromwingroot. 117Figure48.ELFINtestrange 117Figure49.Boeing757flighttestaircraftwithHLFCtestsection;staticpressure,hot-film,andwake-surveyinstrumentation;andattachment-lineflow tensorinstr
33、umentation. 118Figure50.Samplelaminarflowextentanddragreductionob_inedonBoeing 757HLFC flight tests 119Figure 51. GEAE HLFC nacelle test article flown on Airbus A300/B2 and laminar flowobtained on test article . 120FigureFigureFigureFigureFigureFigureFigureFigure52. ELFIN large-scale HLFC wind tunne
34、l investigation results from ONERA S1MA 12153. NFL and HLFC flight test article on VFW 614 aircraft . 12154. Measured pressure on nacelle test article . 12255. A320 HLFC vertical fin program . 12356. A320 HLFC vertical fin analysis . 12457. A320 HLFC vertical fin wind tunnel test in ONERA S1MA . 125
35、58. Theoretical correlation of transition location with R _ynolds number 12559. F- 16XL Ship 1 126viProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-Figure 60. Laminar flow region on perforated-suction glove of F-16XL Ship 1 with and withoutsuction 12
36、7Figure 61. F-16XL Ship 2 supersonic LFC test aircraft 128viiProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-Abbreviations and SymbolsACEEAEDCaBFBLCBMFT
37、CD, tcicLGCqCq, tCERTCFCFDcDLRDOCELFINFFBggHAircraft Energy EfficiencyArnold Engineering and Development Centerdouble wave amplitude, ftblock fuelboundary-layer controlGerman Ministry of Research and Technologytotal drag coefficient, nondimensionalized by free-stream dynamic pressure and referencear
38、easkin-friction coefficientlift coefficientpressure coefficientsuction coefficienttotal suction coefficient, nondimensionalized by free-stream velocity and density andreference areaCentre dl_tudes et de Recherches de Toulousecrossflowcomputational fluid dynamicschord, ftGerman Aerospace Research Est
39、ablishmentdirect operating costEuropean Laminar Flow Investigationfuselagefuel burnacceleration, 32.2 ft/sec 2gap width, fthorizontal tailixProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-HLFCHSCTHSRhIBLkL/DL.E.LFLFCLTPTMNNN,NLFOEWONERAOPECPSERRAEReR
40、e cRe THybrid Laminar Flow ControlHigh-Speed Civil TransportHigh-Speed Researchaltitudeinteracting boundary layerroughness heightlift-to-drag ratio at cruiseleading edgelaminar flowLaminar Flow ControlLangley Low-Turbulence Pressure TunnelMach number= fsl-_ ds“_“_0nacellenumber of Fourier series mod
41、es in timenumber of Fourier series modes in spanwise direc :ionNatural Laminar Flowoperating empty weightOffice National dEtudes et de Recherches AerospatialesOrganization of Petroleum Exporting Countriesparabolized stability equationsrangeRoyal Aircraft EstablishmentReynolds numberchord Reynolds nu
42、mbertransition Reynolds numberProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-Re0ReO,NReO,TSLDTSLFCsTOGWTPTTStUvkU/u, v, w, pU, V, W, pU, V, W, pVVVsVSTFEWx, y, Zx/lO_,ymomentum-thickness Reynolds numbermomentum-thickness Reynolds number at neutral s
43、tabilitymomentum-thickness Reynolds number at transitionLangley Supersonic Low-Disturbance TunnelSupersonic Laminar Flow Controlmarching coordinate for N-factor determinationtakeoff gross weightLangley 8-Foot Transonic Pressure TunnelTollmien-Schlichtingtimevelocitylocal velocity at top of roughness
44、 particlelocal potential velocitydisturbance velocities and pressuremean velocitiesinstantaneous velocities and pressureairspeedvertical tailsuction flow velocityVariable Sweep Transition Flight ExperimentwingCartesian coordinate systemnondimensional lengthdisturbance streamwise wave numberdisturban
45、ce spanwise wave numbergrowth rate for N-factor determinationxiProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-;50AvVk%022D3DSubscripts:kmax0OOboundary-layer thicknessmomentum thicknesswing sweep, degsurface wavelength, ftkinematic viscositylocal kin
46、ematic viscosity at roughnessdisturbance profileradial coordinategroup velocity angledisturbance frequencytwo-dimensionalthree-dimensionalroughness elementmaximummomentum thicknessfree streamA tilde (-) over a symbol indicates instantaneous; a b_r (-), mean; a caret (), complex eigenfunction.xiiProv
47、ided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-AbstractThe history of Laminar Flow Control (LFC) from the 1930s through the1990s is reviewed and the current status of the technology is assessed. Early stud-ies related to the natural laminar boundary-lay
48、er flow physics, manufacturingtolerances for laminar flow, and insect-contamination avoidance are discussed.Although most of this publication is about slot-, porous-, and perforated-suctionLFC concept studies in wind tunnel and flight experiments, some mention is madeof thermal LFC. Theoretical and computational tools to describe the LFC aerody-namics are included for completeness.1. IntroductionThis overview reviews Laminar Flow Control(LFC) research that began in the 1930s and flourishedthrough the early 1960s until it was de-emphas