VA 28 05 26-2011 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY.pdf

上传人:lawfemale396 文档编号:1074998 上传时间:2019-04-06 格式:PDF 页数:8 大小:83.99KB
下载 相关 举报
VA 28 05 26-2011 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY.pdf_第1页
第1页 / 共8页
VA 28 05 26-2011 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY.pdf_第2页
第2页 / 共8页
VA 28 05 26-2011 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY.pdf_第3页
第3页 / 共8页
VA 28 05 26-2011 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY.pdf_第4页
第4页 / 共8页
VA 28 05 26-2011 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY.pdf_第5页
第5页 / 共8页
点击查看更多>>
资源描述

1、09-11 28 05 26 - 1 SECTION 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY SPEC WRITER NOTE: Delete / _ / if not applicable to project. Also delete any other item or paragraph not applicable in the section and renumber the paragraphs. Insert additional provisions as required for th

2、is project. PART 1 - GENERAL 1.1 DESCRIPTION A. This section specifies the finishing, installation, connection, testing and certification of the grounding and bonding required for a fully functional Electronic Safety and Security (ESS) system. B. “Grounding electrode system” refers to all electrodes

3、 required by NEC, as well as including made, supplementary, grounding electrodes. C. The terms “connect” and “bond” are used interchangeably in this specification and have the same meaning 1.2 RELATED WORK SPECS WRITER NOTE: Delete any item or paragraph not applicable in the section. A. Section 01 0

4、0 00 - GENERAL REQUIREMENTS. For General Requirements. B. Section 26 41 00 - FACILITY LIGHTNING PROTECTION. Requirements for a lightning protection system. C. Section 28 05 00 - REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY INSTALLATIONS. For general electrical requirements, quality assurance, coo

5、rdination, and project conditions that are common to more than one section in Division 28. D. Section 28 05 13 - CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for low voltage power and lighting wiring. E. Section 28 08 00 - COMMISIONING OF ELECTRONIC SAFETY AND SECURITY SYST

6、EMS. Requirements for commissioning. 1.3 SUBMITTALS A. Submit in accordance with Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. B. Shop Drawings: 1. Clearly present enough information to determine compliance with drawings and specifications. 2. Include the location of syst

7、em grounding electrode connections and the routing of aboveground and underground grounding electrode conductors. Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-09-11 28 05 26 - 2 C. Test Reports: Provide certified test reports of ground resistance.

8、 D. Certifications: Two weeks prior to final inspection, submit four copies of the following to the /Resident Engineer/ /COTR/: 1. Certification that the materials and installation are in accordance with the drawings and specifications. 2. Certification by the contractor that the complete installati

9、on has been properly installed and tested. 1.4 APPLICABLE PUBLICATIONS A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only. B. American

10、 Society for Testing and Materials (ASTM): B1-07 Standard Specification for Hard-Drawn Copper Wire B3-07 Standard Specification for Soft or Annealed Copper Wire B8-04 Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft C. Institute of Electrical and Elect

11、ronics Engineers, Inc. (IEEE): 81-1983 IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System C2-07 National Electrical Safety Code D. National Fire Protection Association (NFPA): 70-11 National Electrical Code (NEC) 99-2005 Health Care Faciliti

12、es E. Underwriters Laboratories, Inc. (UL): 44-05 . Thermoset-Insulated Wires and Cables 83-08 . Thermoplastic-Insulated Wires and Cables 467-07 Grounding and Bonding Equipment 486A-486B-03 Wire Connectors PART 2 - PRODUCTS 2.1 GROUNDING AND BONDING CONDUCTORS A. Equipment grounding conductors shall

13、 be UL 83 insulated stranded copper, except that sizes 6 mm (10 AWG) and smaller shall be solid copper. Insulation color shall be continuous green for all equipment Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-09-11 28 05 26 - 3 grounding conducto

14、rs, except that wire sizes 25 mm (4 AWG) and larger shall be permitted to be identified per NEC. B. Bonding conductors shall be ASTM B8 bare stranded copper, except that sizes 6 mm (10 AWG) and smaller shall be ASTM B1 solid bare copper wire. 2.2 GROUND RODS A. Copper clad steel, 19 mm (3/4-inch) di

15、ameter by 3000 mm (10 feet) long, conforming to UL 467. B. Quantity of rods shall be as required to obtain the specified ground resistance. 2.3 SPLICES AND TERMINATION COMPONENTS A. Components shall meet or exceed UL 467 and be clearly marked with the manufacturer, catalog number, and permitted cond

16、uctor size(s).2.4 ground connections B. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected. C. Below Grade: Exothermic-welded type connectors. D. Above Grad

17、e: 1. Bonding Jumpers: Compression-type connectors, using zinc-plated fasteners and external tooth lockwashers. 2. Connection to Building Steel: Exothermic-welded type connectors. 3. Ground Busbars: Two-hole compression type lugs, using tin-plated copper or copper alloy bolts and nuts. 4. Rack and C

18、abinet Ground Bars: One-hole compression-type lugs, using zinc-plated or copper alloy fasteners. 5. Bolted Connectors for Conductors and Pipes: Copper or copper alloy, pressure type with at least two bolts. a) Pipe Connectors: Clamp type, sized for pipe. 6. Welded Connectors: Exothermic-welding kits

19、 of types recommended by kit manufacturer for materials being joined and installation conditions. 2.4 EQUIPMENT RACK AND CABINET GROUND BARS A. Provide solid copper ground bars designed for mounting on the framework of open or cabinet-enclosed equipment racks with minimum dimensions of 4 mm thick by

20、 19 mm wide (3/8 inch x inch). Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-09-11 28 05 26 - 4 2.5 GROUND TERMINAL BLOCKS A. At any equipment mounting location (e.g., backboards and hinged cover enclosures) where rack-type ground bars cannot be mo

21、unted, provide screw lug-type terminal blocks. SPEC WRITER NOTE: Include Standard Detail on drawings. Edit detail to suit project requirements. 2.6 SPLICE CASE GROUND ACCESSORIES A. Splice case grounding and bonding accessories shall be supplied by the splice case manufacturer when available. Otherw

22、ise, use 16 mm (6 AWG) insulated ground wire with shield bonding connectors. 2.7 COMPUTER ROOM GROUND A. Provide 50mm2 (1/0 AWG) bare copper grounding conductors bolted at mesh intersections to form an equipotential grounding grid. The equipotential grounding grid shall form a 600mm (24 inch) mesh p

23、attern. The grid shall be bonded to each of the access floor pedestals. 2.8 SECURITY CONTROL ROOM GROUND A. Provide 50mm2 (1/0 AWG) stranded copper grounding conductor(s) color coded with a green jacket, bolted at the Rooms Communications System Grounding Electrode Cooper Plate and circulate to each

24、 equipment rack ground buss bar through the wire management system. Connect each equipment rack, wire management systems cable tray, ladder, etc. to the circulating ground wire with a minimum 25mm2 (4AWG) stranded Cooper Wire, color coded with a green jacket. 1. Connect each equipment rack ground bu

25、ss bar to the circulating ground wire a indicated in 2.9.A, and 2. Connect each additional room item to the circulating ground wire as indicated in 2.9.A. PART 3 - EXECUTION 3.1 GENERAL A. Ground in accordance with the NEC, as shown on drawings, and as specified herein. B. System Grounding: 1. Secon

26、dary service neutrals: Ground at the supply side of the secondary disconnecting means and at the related transformers. 2. Separately derived systems (transformers downstream from the service entrance): Ground the secondary neutral. Provided by IHSNot for ResaleNo reproduction or networking permitted

27、 without license from IHS-,-,-09-11 28 05 26 - 5 SPEC WRITER NOTE: Remove the paragraph below if not required for the project. C. Equipment Grounding: Metallic structures, including ductwork and building steel, enclosures, raceways, junction boxes, outlet boxes, cabinets, machine frames, and other c

28、onductive items in close proximity with electrical circuits, shall be bonded and grounded. SPEC WRITER NOTE: If appropriate for project, include details involving grounding for patient equipment and areas on plans. 3.2 INACCESSIBLE GROUNDING CONNECTIONS A. Make grounding connections, which are burie

29、d or otherwise normally inaccessible (except connections for which periodic testing access is required) by exothermic weld. 3.3 CORROSION INHIBITORS A. When making ground and ground bonding connections, apply a corrosion inhibitor to all contact surfaces. Use corrosion inhibitor appropriate for prot

30、ecting a connection between the metals used. 3.4 CONDUCTIVE PIPING A. Bond all conductive piping systems, interior and exterior, to the building to the grounding electrode system. Bonding connections shall be made as close as practical to the equipment ground bus. 3.5 COMPUTER ROOM/SECURITY EQUIPMEN

31、T ROOM GROUNDING A. Conduit: Ground and bond metallic conduit systems as follows: 1. Ground metallic service conduit and any pipes entering or being routed within the computer room at each end using 16 mm (6AWG) bonding jumpers. 2. Bond at all intermediate metallic enclosures and across all joints u

32、sing 16 mm (6 AWG) bonding jumpers. 3.6 WIREWAY GROUNDING A. Ground and Bond Metallic Wireway Systems as follows: 1. Bond the metallic structures of wireway to provide 100 percent electrical continuity throughout the wireway system by connecting a 16 mm (6 AWG) bonding jumper at all intermediate met

33、allic enclosures and across all section junctions. 2. Install insulated 16 mm (6 AWG) bonding jumpers between the wireway system bonded as required in paragraph 1 above, and the closest building ground at each end and approximately every 16 meters (50 feet). Provided by IHSNot for ResaleNo reproduct

34、ion or networking permitted without license from IHS-,-,-09-11 28 05 26 - 6 3. Use insulated 16 mm (6 AWG) bonding jumpers to ground or bond metallic wireway at each end at all intermediate metallic enclosures and cross all section junctions. 4. Use insulated 16 mm (6 AWG) bonding jumpers to ground

35、cable tray to column-mounted building ground plates (pads) at each end and approximately every 15 meters. 3.7 LIGHTNING PROTECTION SYSTEM A. Bond the lightning protection system to earth ground externally to the building. Under no condition shall the electrical systems third of fourth ground electro

36、de system, or the telecommunications system circulating ground system be connected to the lightning protection system. The Facilitys structural steel may be used to connected the lightning protection system at the direction of the Resident Engineer certified by an independent certified grounding con

37、tractor. 3.8 EXTERIOR LIGHT/CAMERA POLES A. Provide 20 ft 6.1 M of No. 4 bare copper coiled at bottom of pole base excavation prior to pour, plus additional unspliced length in and above foundation as required to reach pole ground stud. 3.9 GROUND RESISTANCE A. Grounding system resistance to ground

38、shall not exceed 5 ohms. Make any modifications or additions to the grounding electrode system necessary for compliance without additional cost to the Government. Final tests shall ensure that this requirement is met. B. Resistance of the grounding electrode system shall be measured using a four-ter

39、minal fall-of-potential method as defined in IEEE 81. Ground resistance measurements shall be made before the electrical distribution system is energized and shall be made in normally dry conditions not fewer than 48 hours after the last rainfall. Resistance measurements of separate grounding electr

40、ode systems shall be made before the systems are bonded together below grade. The combined resistance of separate systems may be used to meet the required resistance, but the specified number of electrodes must still be provided. C. Services at power company interface points shall comply with the po

41、wer company ground resistance requirements. D. Below-grade connections shall be visually inspected by the /Resident Engineer/ /COTR/ prior to backfilling. The contractor shall notify Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-09-11 28 05 26 - 7

42、the /Resident Engineer/ /COTR/ 24 hours before the connections are ready for inspection. 3.10 GROUND ROD INSTALLATION A. Drive each rod vertically in the earth, not less than 3000 mm (10 feet) in depth. B. Where permanently concealed ground connections are required, make the connections by the exoth

43、ermic process to form solid metal joints. Make accessible ground connections with mechanical pressure type ground connectors. C. Where rock prevents the driving of vertical ground rods, install angled ground rods or grounding electrodes in horizontal trenches to achieve the specified resistance. /3.

44、11 GROUNDING FOR RF/EMI CONTROL A. Install bonding jumpers to bond all conduit, cable trays, sleeves and equipment for low voltage signaling and data communications circuits. Bonding jumpers shall consist of 100 mm (4 inches) wide copper strip or two 6 mm (10 AWG) copper conductors spaced minimum 10

45、0 mm (4 inches) apart. Use 16 mm (6 AWG) copper where exposed and subject to damage. B. Comply with the following when shielded cable is used for data circuits. 1. Shields shall be continuous throughout each circuit. 2. Connect shield drain wires together at each circuit connection point and insulat

46、e from ground. Do not ground the shield. 3. Do not connect shields from different circuits together. 4. Shield shall be connected at one end only. Connect shield to signal reference at the origin of the circuit. Consult with equipment manufacturer to determine signal reference./ 3.12 LABELING A. Com

47、ply with requirements in Division 26 Section “ELECTRICAL IDENTIFICATION“ Article for instruction signs. The label or its text shall be green. B. Install labels at the telecommunications bonding conductor and grounding equalizer /and at the grounding electrode conductor where exposed/. 1. Label Text:

48、 “If this connector or cable is loose or if it must be removed for any reason, notify the facility manager.“ 3.13 FIELD QUALITY CONTROL A. Perform tests and inspections. Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-09-11 28 05 26 - 8 B. Tests and

49、Inspections: 1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements. 2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturers written instructions. 3. T

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 标准规范 > 国际标准 > 其他

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1