2019版七年级数学下册第六章概率初步试题(新版)北师大版.doc

上传人:dealItalian200 文档编号:1114007 上传时间:2019-04-28 格式:DOC 页数:12 大小:1.61MB
下载 相关 举报
2019版七年级数学下册第六章概率初步试题(新版)北师大版.doc_第1页
第1页 / 共12页
2019版七年级数学下册第六章概率初步试题(新版)北师大版.doc_第2页
第2页 / 共12页
2019版七年级数学下册第六章概率初步试题(新版)北师大版.doc_第3页
第3页 / 共12页
2019版七年级数学下册第六章概率初步试题(新版)北师大版.doc_第4页
第4页 / 共12页
2019版七年级数学下册第六章概率初步试题(新版)北师大版.doc_第5页
第5页 / 共12页
点击查看更多>>
资源描述

1、1第六章 概率初步1.事件类别的判断必然事件、随机事件、不可能事件是概率初步的重要内容,我们在学习中接触的一些规律、事实、定义等,都是必然事件,而一些不正确的语句都是不可能事件或者随机事件.正确理解和区分这些事件是中考的一个热点,此类问题多以选择题和填空题出现.【例】下列事件中,必然事件是 ( )A.掷一枚普通的正方体骰子,骰子停止后朝上的点数是 1B.掷一枚普通的正方体骰子,骰子停止后朝上的点数是偶数C.抛掷一枚普通的硬币,掷得的结果不是正面就是反面D.从装有 99个红球和 1个白球的布袋中随机取出一个球,这个球是红球【标准解答】选 C.A.是随机事件,故选项不合题意;B.是随机事件,故选项

2、不合题意;C.是必然事件,故选项符合题意;D.是随机事件,故选项不合题意.故选 C.1.在一个不透明的袋子中装有 4个除颜色外完全相同的小球,其中黄球 1个,红球 1个,白球 2个,“从中任意摸出 2个球,它们的颜色相同”这一事件是 ( )A.必然事件 B.不可能事件C.随机事件 D.确定事件2.下列说法中正确的是 ( )A.“打开电视机,正在播动物世界 ”是必然事件B.某种彩票的中奖概率为千分之一,说明每买 1 000张彩票,一定有一张中奖C.抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为三分之一D.想了解长沙市所有城镇居民的人均年收入水平,宜采用抽样调查3.下列说法中正确的是 ( )A.

3、“任意画出一个等边三角形,它是轴对称图形”是随机事件B.“任意画出一个平行四边形,它是中心对称图形”是必然事件C.“概率为 0.0001的事件”是不可能事件D.任意掷一枚质地均匀的硬币 10次,正面向上的一定是 5次4.下列事件:在足球赛中,弱队战胜强队;抛掷一枚硬币,落地后正面朝上;任取两个正整数,其和大于 1;长分别为 3,5,9厘米的三条线段能围成一个三角形.其中必然事件的个数是 ( )2A.1 B.2 C.3 D.45.下列说法属于不可能事件的是 ( )A.四边形的内角和为 360B.梯形的对角线不相等C.内错角相等D.存在实数 x满足 x2+1=02.概率的意义概率是用来刻画随机事件

4、发生的可能性大小的为 01 之间的常数,概率小则事件发生的可能性小,概率大则事件发生的可能性就大,因此对事件发生的可能性大小常通过概率的大小来反映,但并不是说这一规律在每次试验中一定存在,它是对大量重复试验而言的.这种规律被广泛应用于人们的日常生活和其他领域.【例】下列说法正确的是 ( )A.随机抛掷一枚均匀的硬币,落地后反面一定朝上B.从 1,2,3,4,5中随机取一个数,取得奇数的可能性较大C.某彩票中奖率为 36%,说明买 100张彩票,有 36张中奖D.打开电视,中央一台正在播放新闻联播【标准解答】选 B.掷一枚硬币的试验中,着地时反面向上的概率为 ,则正面向上的概率也为 ,不一定就1

5、2 12反面朝上,故此选项错误;B.从 1,2,3,4,5中随机取一个数,因为奇数多,所以取得奇数的可能性较大,故此选项正确;C.某彩票中奖率为 36%,说明买 100张彩票,有 36张中奖,不一定,概率是针对数据非常多时趋近的一个数,并不能说买 100张该种彩票就一定有 36张能中奖,故此选项错误;D.必然事件是一定会发生的事件,打开电视,中央一台正在播放新闻联播,很明显不一定能发生,错误,故选 B.1.在某校艺体节的乒乓球比赛中,李东同学顺利进入总决赛,且个人技艺高超,有同学预测“李东夺冠的可能性是 80%”,对该同学的说法理解正确的是 ( )A.李东夺冠的可能性较小B.李东和他的对手比赛

6、 10局时,他一定会赢 8局C.李东夺冠的可能性较大D.李东肯定会赢32.下列说法中正确的是 ( )A.“打开电视,正在播放新闻节目”是必然事件B.“抛一枚硬币,正面朝上的概率为 ”表示每抛两次就有一次正面朝上12C.“抛一枚均匀的正方体骰子,朝上的点数是 6的概率为 ”表示随着抛掷次数的增加“抛出朝上的点数16是 6”这一事件发生的频率稳定在 附近16D.为了了解某种节能灯的使用寿命,选择全面调查3.用频率估计概率一般地,当试验的可能结果有很多且各种可能结果发生的可能性相等时,可以用 P(A)= 的方式得出概m率;当试验的所有可能结果不是有限个,或各种可能结果发生的可能性不相等时,常常是通过

7、统计频率来估计概率,即在同样条件下,用大量重复试验所得到的随机事件发生的频率的稳定值来估计这个事件发生的概率.【例】研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?操作方法:先从盒中摸出 8个球,画上记号放回盒中,再进行摸球试验,摸球试验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续.活动结果:摸球试验活动一共做了 50次,统计结果如下表:推测计算:由上述的摸球试验可推算:(1)盒中红球、黄球各占总球数的百分比分别是多少?(2)盒中有红球多少个?【标准解答】(1)由题意可知,50 次摸球试验活动中,出现红球 20次,黄球 30次,红球所占百分比为

8、 2050=40%,4黄球所占百分比为 3050=60%,答:红球占 40%,黄球占 60%.(2)由题意可知,50 次摸球试验活动中,出现有记号的球 4次,总球数为 50 =100个,(48)红球数为 10040%=40.答:盒中红球有 40个.1.一个不透明的盒子里装有除颜色外无其他差别的白珠子 6颗和黑珠子若干颗,每次随机摸出一颗珠子,放回摇匀后再摸,通过多次试验发现摸到白珠子的频率稳定在 0.3左右,则盒子中黑珠子可能有 颗.2.在一个不透明的袋子中装有除颜色外其余均相同的 n个小球,其中 5个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸

9、出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:摸球试验次数 100 1 000 5 000 10 000 50 000 100 000摸出黑球次数 46 487 2 506 5 008 24 996 50 007根据列表,可以估计出 n的值是 .3.色盲是伴 X染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如下表:5根据上表,估计在男性中,男性患色盲的概率为 (结果精确到 0.01).4.一只不透明的袋子中装有 4个质地、大小均相同的小球,这些小球分别标有数字 3,4,5,x.甲、乙两人每次同时从袋中各随机摸出 1个球,并计算摸出的这

10、2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复试验.试验数据如下表解答下列问题:6(1)如果试验继续进行下去,根据上表数据,出现“和为 8”的频率将稳定在它的概率附近.估计出现“和为8”的概率是 .(2)如果摸出的这两个小球上数字之和为 9的概率是 ,那么 x的值可以取 7吗?请用列表法或画树状图法13说明理由;如果 x的值不可以取 7,请写出一个符合要求的 x值.4.求概率的关键及基本方法(1)关键:明确事件发生的所有可能情况;明确符合条件的情况.(2)基本方法:当等可能事件发生的结果是有限的,且数量较少时,常常将其所有的结果列出计算概率.【例 1】一个不透明的盒子中装有 6个大小

11、相同的乒乓球,其中 4个是黄球,2 个是白球.从该盒子中任意摸出一个球,摸到黄球的概率是 ( )A. B. C. D.12 13 23 25【标准解答】选 C.盒子中装有 6个大小相同的乒乓球,其中 4个是黄球,摸到黄球的概率是 = ,故选4623C.【例 2】如图是一个可以自由转动的转盘,转盘分为 6个大小相同的扇形,指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),指针指向阴影区域的概率是 ( )A. B. C. D.23 13 12 14【标准解答】选 C.根据阴影区域的面积占总面积的二分之一,可得指针指向阴影区域的

12、概率为 ,故选 C.1271.如图,在方格纸中,随机选择标有序号中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是 ( )A. B. C. D.15 25 35 452.甲、乙两布袋都装有红、白两种小球,两袋球总数相同,两种小球仅颜色不同,甲袋中,红球个数是白球个数的 2倍,乙袋中,红球个数是白球个数的 3倍,将乙袋中的球全部倒入甲袋,随机从甲袋中摸出一个球,摸出红球的概率是 ( )A. B. C. D.512 712 1724 253.一个不透明的布袋中,放有 3个白球,5 个红球,它们除颜色外完全相同,从中随机摸取 1个,摸到红球的概率是 ( )A. B. C. D.58 15 3

13、8 134.小球在如图所示的地板上自由滚动,并随机地停留在某块方砖上,每一块方砖除颜色外完全相同,它最终停留在黑色方砖上的概率是 .5.从-1,0, ,0.3, ,这六个数中任意抽取一个,抽到无理数的概率为 .2136.事件 A发生的概率为 ,大量反复做这种试验,事件 A平均每 100次发生的次数是 .1207.如图,正方形的阴影部分是由四个直角边长都是 1和 3的直角三角形组成的,假设可以在正方形内部随8意取点,那么这个点取在阴影部分的概率为 .8.某校男子足球队的年龄分布如下面的条形图所示.(1)求这些队员的平均年龄.(2)下周的一场校际足球友谊赛中,该校男子足球队将会有 11名队员作为首

14、发队员出场,不考虑其他因素,请你求出其中某位队员首发出场的概率.9跟踪训练答案解析1.事件类别的判断【跟踪训练】1.【解析】选 C.在一个不透明的袋子中装有 4个除颜色外完全相同的小球,其中黄球 1个,红球 1个,白球2个,从中任意摸出 2个球,有红黄、红白、黄白、白白 4种可能,从中任意摸出 2个球,它们的颜色相同可能发生,也可能不发生,所以这一事件是随机事件.故选 C.2.【解析】选 D.A为不确定事件;B 为不确定事件,有可能中奖,也有可能不中奖;C 的概率为二分之一;D 因为数据较多,如果采取普查会耗时耗力,因此易采用抽样调查.3.【解析】选 B,A、 “任意画出一个等边三角形,它是轴

15、对称图形”是必然事件,选项错误;B、 “任意画出一个平行四边形,它是中心对称图形”是必然事件,选项正确;C、 “概率为 0.000 1的事件”是随机事件,选项错误;D、任意掷一枚质地均匀的硬币 10次,正面向上的次数可能是 5次,选项错误.4.【解析】选 A.根据在一定条件下一定发生的事情是必然事件.由于:在足球赛中,弱队战胜强队是随机事件,故不合题意;抛掷 1枚硬币,硬币落地时正面朝上是随机事件,故不合题意;任取两个正整数,其和大于 1是必然事件,故符合题意;长为 3 cm,5 cm,9 cm的三条线段能围成一个三角形是不可能事件,故不合题意.因此必然事件有 1个.故选 A.5.【解析】选

16、D.A、是必然事件,故选项不合题意;B、是随机事件,故选项不合题意;C、是随机事件,故选项不合题意;D、不可能事件,故选项符合题意.2.概率的意义【跟踪训练】1.【解析】选 C.根据题意,有人预测李东夺冠的可能性是 80%,结合概率的意义,A.李东夺冠的可能性较大,故本选项错误;B.李东和他的对手比赛 10局时,他可能赢 8局,故本选项错误;C.李东夺冠的可能性较大,故本选项正确;D.李东可能会赢,故本选项错误.故选 C.2.【解析】选 C.用排除法.“打开电视,正在播放新闻节目”不是必然事件,是随机事件,故 A错;“抛一枚硬币,正面朝上的概率为 ”表示有 的机会是正面朝上的,不能确定每抛两次

17、就有一次正面朝上,故 B错;12 12为了了解某种节能灯的使用寿命,选择全面调查,是错误的,因为这种调查具有破坏性,故 D错,所以选 C.3.用频率估计概率【跟踪训练】1.【解析】设黑珠子有 n颗,10由题意可得, =0.3,66+解得 n=14.故估计盒子中黑珠子大约有 14颗.答案:142.【解析】随着摸球次数的增加,摸出黑球的频率在 0.5左右,所以摸出黑球的概率为 0.5,所以n=50.5=10.答案:103.【解析】根据统计表可知:色盲患者的频率大约在 0.070左右,所以估计在男性中,男性患色盲的概率为0.07.答案:0.074.【解析】(1)利用图表得出:试验次数越多,频率越接近

18、实际概率,所以出现“和为 8”的概率是 0.33.(2)当 x=7时,两个小球上数字之和为 9的概率是: = .21216x 的值不可以取 7.当 x=5时,两个小球上数字之和为 9的概率是 .134.求概率的关键及基本方法【跟踪训练】1.【解析】选 C.共有5 种情况,其中能与图中阴影部分构成轴对称图形的有三种,所以概率为 .352.【解析】选 C.设甲袋中白球个数为 x个,那么红球个数为 2x个,乙袋中白球个数为 y个,那么红球个数为 3y个,则根据题意,得 3x=4y,球的总数为(3x+4y)个,红球总数为(2x+3y)个,随机从甲袋中摸出一个球,摸11出红球的概率是 = = ,故应选

19、C.2+33+4243+34+417243.【解析】选 A.由概率的定义,易知:P(红球)= = .53+5584.【解析】一共有 9块,黑色的有 4块,所以最终停留在黑色方砖上的概率是 .49答案:495.【解析】共有六个数字,无理数有 2个,所以抽到无理数的概率 P(无理数)= = .2613答案:136.【解析】100 =5(次).120答案:5 次7.【解析】S 正方形 = (32)2=18,12S 阴影 =4 31=6,12这个点取在阴影部分的概率为: = .61813答案:138.【解析】(1)该校男子足球队队员的平均年龄是:(132+146+158+163+172+181)22=33022=15(岁).故这些队员的平均年龄是 15岁.(2)该校男子足球队一共有 22名队员,将会有 11名队员作为首发队员出场,不考虑其他因素,其中某位队员首发出场的概率为: = .11221212

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 考试资料 > 中学考试

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1