1、- 1 -河北省沧州市盐山中学 2018 学年度高二上学期数学期中考试试题(理科)一、选择题(本大题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项符合题目要求1、命题“2,0xRx”的否定为( )A.2,B. 2,0RxC. xx D. 2、若 98 与 63 的最大公约数为 ,二进制数 化为十进制数为 ,则A. 53 B. 54 C. 58 D. 603、某校为了解本校高三学生学习的心理状态,采用系统抽样方法从 800 人中抽取 40 人参加某种测试,为此将他们随机编号为 1,2,800,分组后在第一组采用简单随机抽样的方法抽到的号码为 18,抽到的 40
2、人中,编号落在区间 120, 的人做试卷 A,编号落在20156,的人做试卷 B,其余的人做试卷 C,则做试卷 的人数为 ( )A. 10 B. 12 C. 18 D. 284、某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了 5 次试验,根据收集到的数据(如下表) ,由最小二乘法求得回归直线方程 6.48.0+=xy 零件数 x 个 10 20 30 40 50加工时间 y(min) 62 75 81 89表中有一个数据模糊不清,请你推断出该数据的值为( )A68 B68.2 C69 D755、已知数据 12,nx 的平均数 5x,方差 24S,则数据13737的平均数和方差
3、分别为( )A. 15,36 B. 22,6 C. 15,6 D. 22,366、在区间 0,2上随机地取一个数 x,则事件“ 13sin2x”发生的概率( )- 2 -A. 12 B. 3 C. 14 D. 67 “5m”是“方程22175xym表示椭圆”的A 充分必要条件 B 充分不必要条件C 必要不充分条件 D 既不充分也不必要条件8、下列程序框图中,输出的 A的值是( )A 120 B 18 C 12 D 199若椭圆2369xy的弦被点 4,平分,则此弦所在直线的斜率为( )A 2 B -2 C 13 D 210、如图所示,在正方体 1ABC中,已知 ,MN分别是 BD和 A的中点,
4、则1M与 1DN所成角的余弦值为( )A. 30 B. 15 C. 30 D. 1511、已知双曲线 2,xyab与抛物线 28yx有一个公共的焦点 F,且两曲线的一个交点为 P,若 5F,则双曲线的离心率为( )A. 5 B. 3 C. 2 D. 212、已知双曲线 的右顶点到其一条渐近线的距离等于 ,抛物线- 3 -的焦点与双曲线 的右焦点重合,则抛物线 上的动点 到直线 和距离之和的最小值为( )A. 1 B. 2 C. 3 D. 4二、填空题(本大题共 4 小题,每小题 5 分,共 20 分,请将答案填在答题卡相应位置)13、由命题“存在 xR,使 x2+2x+m0”是假命题,则实数
5、m 的取值范围为 14、已知向量 , ,且 与 互相垂直,则 的值是_15、如图,在平行六面体 1ABCD中, AC与 BD的交点为点 M.设 1CDa,1CBb, 1c,用 a, b, c表示向量 1M,则 1_16已知抛物线 ,过 的焦点的直线与 交于 , 两点。弦 长为 ,则线段 的中垂线与 轴交点的横坐标为_三、解答题(本大题共 6 小题,共 70 分,解答应写出文字说明,证明过程或演算步骤)17(10 分) 、给定命题 p:对任意实数 x都有 210ax成立; q:关于 x的方程20xa有实数根如果 q为真命题, pq为假命题,求实数 a的取值范围18(12 分)、某校冬令营有三名男
6、同学 A,B,C 和三名女同学 X,Y,Z,(1)从 6 人中抽取 2 人参加知识竞赛,求抽取的 2 人都是男生的概率;(2)若从这 3 名男生和 3 名女生中各任选一名,求这 2 人中包含 A 且不包含 X 的概率.- 4 -19(12 分)、某学校 100 名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是: 60,5, 7,, 80,, 9,, 10,(1)求图中 a 的值(2)根据频率分布直方图,估计这 100 名学生语文成绩的平均分;(3)若这 100 名学生语文成绩某些分数段的人数 x与数学成绩相应分数段的人数 y之比如下表所示,求数学成绩在 90,1的人数分数段
7、6,507,8,90,x: y1:1 2:1 3:4 4:520(12 分)、已知椭圆 C 的中心在原点,焦点在 x 轴上,焦距为 2,离心率为 1(1)求椭圆 C 的方程;(2)设直线 l 经过点 M(0,1) ,且与椭圆 C 交于 A,B 两点,若 MB,求直线 l 的方程21(12 分)、在底面是矩形的四棱锥 P-ABCD 中,PA平面 ABCD,PAAB2,BC4,E 是PD 的中点- 5 -(1)求证:平面 PDC平面 PAD;(2)求二面角 E-AC-D 的余弦值;(3)求直线 CD 与平面 AEC 所成角的正弦值22(12 分)、在平面直角坐标系 中,已知点 , ,动点 不在 轴
8、上,直线 、的斜率之积 ()求动点 的轨迹方程;()设 是轨迹上任意一点, 的垂直平分线与 轴相交于点 ,求点 横坐标的取值范围期中考试数学答案- 6 -选择题答案15ACBAD 610BCDDC 11-12DB填空题 13、 【答案】 (1,+)14、 【答案】 15、 【答案】 12abc16 .17、 【答案】 1,0,4试题解析:由题意可知,命题 p为真 0a或 210 44aa,命题 q为真 211404a,故 ppq真为 真 , 假为 假 , 或, a假真或0, 14a或 ,即 0或14a.18【答案】 () 15() 29P.试题解析:()由题意知,从 6 人中任选两人,其一切可
9、能的结果组成的基本事件有:,ABCXAYZBCXYBZCXYZXYZ,共 15个.所选两个人都是男的事件所包含的基本事件有: ,A,共 3个,则所求事件的概率为: 315P.()从这 3 名男生和 3 名女生各任选一个,其一切可能的结果组成的基本事件有:,AXYZBXYZCXYZ,共 9个,包含 但不包括 的事件所包含的基本事件有: A,共 2个,- 7 -所以所求事件的概率为: 29P.18、【答案】解:(1) 10(.403.2)1aa, 0.5(2)50-60 段语文成绩的人数为: 5%人60-70 段语文成绩的人数为: .1470-80 段语文成绩的人数为: 人300380-90 段语
10、文成绩的人数为: .2290-100 段语文成绩的人数为: 15%15人564075380973x(3)依题意:50-60 段数学成绩的人数=50-60 段语文成绩的人数为=5 人60-70 段数学成绩的的人数为= 50-60 段语文成绩的人数的一半= 人2041 70-80 段数学成绩的的人数为= 人403 80-90 段数学成绩的的人数为= 人25 90-100 段数学成绩的的人数为= 人10120、 【答案】 (1)243xy;(2) 2xy 或 2xy试题解析:(1)设椭圆方程为 210,ab,因为 1,ca,所以2,3ab,所求椭圆方程为 43xy.(2)由题得直线 l 的斜率存在,
11、设直线 l 方程为 y=kx+1,则由 21 43ykx得23480kx( ) ,且 A 设 12,xyB,则由 AMB得- 8 -12x ,又 122834 kx,所以 22834 kx消去 2x得22834kk,解得 214, k,所以直线 l的方程为 12yx,即0xy或 0xy .21【答案】 (1)证明见解析;(2) 23;(3) (1)证明: 0ADC, 0APCDAD,CDAP 又APADA,CD平面 PAD又CD?平面 PDC,平面 PDC平面 PAD(2)设平面 AEC 的法向量 n(x,y,z) ,则 令 z1,则 y ,x1,平面 AEC 的一个法向量为 n(1, ,1),又平面 ACD 的法向量为 AP(0,0,2) ,cosn, AP ,锐二面角 EACD 的余弦值是 (3)设直线 CD 与平面 AEC 所成的角为 ,平面 AEC 的一个法向量为 n(1, ,1)且CD(2,0,0) ,sin 3,即直线 CD 与平面 AEC 所成角的正弦值为 考点:1、面面垂直;2、二面角;3、线面角22、 【答案】() ( ) ;() .试题解析:()设 ( ) ,- 9 -由题意得 ,整理得 ,动点 的轨迹方程为 ( )()设 , ,依题意得 ,即 ,两边平方整理得 又点 在椭圆上, ( ) ,即 ,且 , , ,又 , 即点 横坐标 的取值范围为