2006年内江市初中毕业会考暨高中阶段招生考试试卷及答案解析.pdf

上传人:deputyduring120 文档编号:1516984 上传时间:2021-08-24 格式:PDF 页数:8 大小:169.97KB
下载 相关 举报
2006年内江市初中毕业会考暨高中阶段招生考试试卷及答案解析.pdf_第1页
第1页 / 共8页
2006年内江市初中毕业会考暨高中阶段招生考试试卷及答案解析.pdf_第2页
第2页 / 共8页
2006年内江市初中毕业会考暨高中阶段招生考试试卷及答案解析.pdf_第3页
第3页 / 共8页
2006年内江市初中毕业会考暨高中阶段招生考试试卷及答案解析.pdf_第4页
第4页 / 共8页
2006年内江市初中毕业会考暨高中阶段招生考试试卷及答案解析.pdf_第5页
第5页 / 共8页
亲,该文档总共8页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、- 1 - 内江市 2006 年初中毕业会考暨高中阶段招生考试试卷 数 学 (非课改区:东兴区、资中县) 会考卷( 100 分) (考试时间:2006-6-12上午 9:0011:00) 第卷(选择题 共 36 分) 一、选择题(每小题 3 分,共计 36 分) 1、 1 2006 的倒数是 ( ) A. -2006 B. 2006 C. 1 2006 D. 1 2006 2、台湾是我国最大的岛屿,总面积为 35989.76平方千米。用科学记数法应表示为(保留三个有效数字) A.3.591 0 6 平方千米 B.3.60 10 6 平方千米 C. 3.5910 4 平方千米 D. 3.60 1

2、0 4 平方千米 3、一个角的余角比它的补角的 1 2 少 20,则这个角为( ) A.30 B.40 C.60 D.75 4、下列运算正确的是( ) A.a 5 a 3 =a 15 B. a 5 -a 3 =a 2 C. (-a 5 ) 2 =a 10 D. a 6 a 3 =a 2 5、在 RtABC 中,C=90,AB=12 ,AC=5,则sinA 的值是( ) A. 5 12 B. 5 13 C. 12 13 D. 119 12 6、不等式组 x+2 0 1-x 1 的解集在数轴上表示正确的是( ) 7、若一组数据 1,2,x,3,4 的平均数是 3,则这组数据的方差是( ) A. 2

3、 B. 2 C. 10 D. 10 8、下列方程没有实数根的是( ) A. x 2 -x-1=0 B. x 2 -6x+5=0 C. 2 x-2 3x 3 0+ = D.2x 2 +x+1=0 9、一辆汽车由内江匀速驶往成都,下列图像中能大致反映汽车距离成都的路程 s(千米)和行驶时间 t(小 时)的关系的是( ) 10、方程 2 63 1 x1x1 = 的解是( ) A.x=1 B.x=-4 C. x 1 =1,x 2 =-4 D.以上答案都不对 D C B A -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 D A B t(小时) s(千米)

4、 O t(小时) s(千米) O t(小时) s(千米) O t(小时) s(千米) O C - 2 - 11、如图(1)将矩形纸片 ABCD 沿 AE 折叠,使点 B 落在直角梯形 AECD的中位线 FG上,若 AB= 3 ,则 AE 的长为( ) A.23 B. 3 C. 2 D. 3 3 2 12、已知O的半径 OA=2,弦 AB、AC的长分别是 23、 33,则BAC的度数为( ) A.15 B.75 C.15或75 D.15或45 第二卷(非选择题 共 64 分) 二、填空题(每小题3分,共计12分) 13、函数 1 y= 1-x 中,自变量 x的取值范围为 . 14、方程(x-2)

5、 (x-3)=6 的解为 . 15、如图(2) ,在 ABCD 中,ABC 的角平分线 BE 交 AD于 E 点 AB=5,ED=3,则 ABCD 的周长为 . 16、如图(3) ,反比例函数图像上一点 A 与坐标轴围成的矩形 ABOC 的积是 8 ,则该反比例函数的解析式为 . 三、解答下列各题(本大题2 小题,共计14 分) 17、 (7 分) 30 11 ( ) ( 3.14) |1 tan 60 | 2 32 ; 18、 (7 分)先化简,再求值: 22 ab a2b2 1 a 2b a 4ab 4b + ,其中 a= 2 ,b=1. B F E G D C B A 图2 D A C

6、B E 图3 x y O C B A - 3 - 四、解答下列各题(本大题2 小题,共计15 分) 19、 (8 分)如图(4) ,在ABD 和ACE 中,有下列四个等式: 1 AB=AC 2 AD=AE 3 1=2 4 BD=CE. 请你以其中三个等式作为题设,余下的作为结论, 写出一个真命题(要求写出已知,求证及证明过程) 20、 (7 分)为了了解某校初三年级 500 名学生的视力情况, 现从中随机抽测了若干名学生的视力作为样本进行数据处理, 并绘出频率分布直方图如下: 已知学生的视力都大于 3.95 而小于5.40(均为3个有效数字) , 图中从左到右五个小长方形的高的比为 1:2:3

7、:5:1.视力最好 的一组的频数为 5,请你回答以下问题: (1)共抽测了多少名学生? (2)若视力不低于 4.85 属视力正常,低于 4.85 属视力不正常, (3)在抽测的学生当中,视力正常的占百分之几? (4)根据抽样调查结果,清理估算该校初三年级学生当中, 大约有多少名学生视力不正常? 2 1 E C B A 图4 5.4454.545 3.945 视力 频率 组距 - 4 - 五、解答下列各题(本大题 2 小题,共 15 分) 21、 ( 7 分)如图( 5) ,已知:在 Rt ABC 中, ACB=90,sinB= 3 5 ,D 是 BC 上一点,DEAB,垂 足为E,CD=DE,

8、AC+CD=9.求:BC 的长 22、某学校要印刷一批宣传材料,甲印务公司提出售制版费 900 元,另外每份材料收印刷费 0.5 元;乙印 务公司提出不受制版费,每份材料收印刷费 0.8 元。 ( 1)分别写出两家印务公司的收费 y(元)与印刷材料的份数 x(份)之间的函数关系式 . ( 2)若学校预计要印刷 5000 份以内的宣传材料,请问学校应选择哪一家印务公司更合算? 图 5 E D C B A - 5 - 六、证明题(本大题共 8 分) 23、如图( 6) AB 是 O 的直径,弦 DC AB 于点 E,在 DA 上取一点 F,连结 CF 交 AB 于点 M, 连结 DF 并延长交 B

9、A 的延长线于点 N. 求证: ( 1) DFC= DOB;( 2) MN OM=MC FM. B N F A D C EM O 图 6 - 6 - 加试卷( 50 分) 一、填空题(本大题5个小题,每小题4 分,共 20 分) 1、已知点 P(x-1,x+3),那么点P 不可能在第 象限. 2、某广告公司准备设计衣服形状为梯形的广告牌,要求梯形的四条 边长分别为 1 米、4 米、4 米、5 米,则该广告牌的面积为 _平方米. 3、 若a+2b+3c=12, 且 a 2 +b 2 +c 2 =ab+bc+ca, 则 a+b 2 +c 3 = . 4、如图(7)有一边长为 6 的正三角形 ABC

10、 木块(厚度不计) ,以 A 为端点,在 CA 的延长线上拉一条长为 15 的细绳(细绳的伸缩不 计) ,握住点P 拉直细绳,把它全部紧紧缠绕在ABC 木块上(缠 绕时木块不动) ,点P 与拉动的路线长为 . 5、对于正数x,规定 f(x)= x 1x+ , 例如 f(3)= 33 13 4 = + , f( 1 3 )= 1 1 3 1 4 1 3 = + , 计算 f( 1 2006 )+ f( 1 2005 )+ f( 1 2004 )+ f( 1 3 )+ f( 1 2 x)+ f(1)+ f(1)+ f(2)+ f (3)+ + f(2004)+ f(2005)+ f(2006)=

11、. 二、解答题(本大题4个小题,共计 30 分)解答题必须写出必要的文字说明、证明过程或推演步骤. 6、 (7 分)内江市对城区沿江两岸的部分路段进行亮化工程建设,整个工程拟由甲、乙两个安装公司共同 完成。从两个公司的业务资料看到:若两个公司合做,则恰好用 12 天完成;若甲、乙合做 9天后,由 甲再单独做 5 天也恰好完成。如果每天需要支付甲、乙两公司的工程费用分别为 1.2 万元和0.7万元。 试问: (1)甲、乙两公司单独完成这项工程各需多少天? (2)要使整个工程费用不超过 22.5万元,则乙公司最少应施工多少天? A C B P 图 7 - 7 - 7、 (7 分)已知实数 x、y、

12、a 满足: xy8 8xy 3xya x2ya3+ = + +,试问长度 分别为 a、y、a 的三条线段能否组成一个三角形?如果能,请求出该三角形的面积;如果不能,请说明 理由. 8、 (8 分)如图(8)AB 是O 的直径,PA 切O 于点 C,BPA的角平分线交 AC 于点 E,交 AB 于点F,交 O 于点D,B=60,线段 BF、AF是一元二次方程 2 xkx230 +=的两根(k 为常数) (1)求证:PBAE=PABF. (2)求证:O 的直径是常数 k. (3)求 tanDPB. 图 8 O P F E D C B A - 8 - 9、 (8 分)已知,二次函数 2 1 y mx

13、 +3(m )x+4(m 0) 4 = 与 x 轴交于 A、B 两点, (A在 B 的左边) ,与 y 轴交于点 C,且ACB=90. (1)求这个二次函数的解析式. (2)矩形 DEFG 的一条边DG 在AB 上,E、F 分别在BC、AC 上,设 OD=x,矩形 DEFG 的面积为 S,求 S 关于 x 的函数解析式. (3)将(1)中所得抛物线向左平移 2 个单位后,与 x 轴交于 AB AB 、 两点( 在 的左边) ,矩 形 DEFG的一条边 DG在 AB上 GD ( 在 的左边) , EF 、 分别在抛物线上,矩形 DEFG的周 长是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 考试资料 > 中学考试

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1