ASTM A500 A500M-2010a Standard Specification for Cold-Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes《圆形与异型冷成型焊接与无缝碳素钢结构管标准规格》.pdf

上传人:花仙子 文档编号:458594 上传时间:2018-11-25 格式:PDF 页数:5 大小:94.80KB
下载 相关 举报
ASTM A500 A500M-2010a Standard Specification for Cold-Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes《圆形与异型冷成型焊接与无缝碳素钢结构管标准规格》.pdf_第1页
第1页 / 共5页
ASTM A500 A500M-2010a Standard Specification for Cold-Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes《圆形与异型冷成型焊接与无缝碳素钢结构管标准规格》.pdf_第2页
第2页 / 共5页
ASTM A500 A500M-2010a Standard Specification for Cold-Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes《圆形与异型冷成型焊接与无缝碳素钢结构管标准规格》.pdf_第3页
第3页 / 共5页
ASTM A500 A500M-2010a Standard Specification for Cold-Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes《圆形与异型冷成型焊接与无缝碳素钢结构管标准规格》.pdf_第4页
第4页 / 共5页
ASTM A500 A500M-2010a Standard Specification for Cold-Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes《圆形与异型冷成型焊接与无缝碳素钢结构管标准规格》.pdf_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、Designation: A500/A500M 10aStandard Specification forCold-Formed Welded and Seamless Carbon Steel StructuralTubing in Rounds and Shapes1This standard is issued under the fixed designation A500/A500M; the number immediately following the designation indicates the yearof original adoption or, in the c

2、ase of revision, the year of last revision. A number in parentheses indicates the year of last reapproval.A superscript epsilon () indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the Department of Defense.1. Scope*1.1 This sp

3、ecification covers cold-formed welded and seam-less carbon steel round, square, rectangular, or special shapestructural tubing for welded, riveted, or bolted construction ofbridges and buildings, and for general structural purposes.1.2 This tubing is produced in both welded and seamlesssizes with a

4、periphery of 88 in. 2235 mm or less, and aspecified wall thickness of 0.875 in. 22 mm or less. Grade Drequires heat treatment.NOTE 1Products manufactured to this specification may not besuitable for those applications such as dynamically loaded elements inwelded structures, etc., where low-temperatu

5、re notch-toughness propertiesmay be important.1.3 The values stated in either SI units or inch-pound unitsare to be regarded separately as standard. Within the text, theSI units are shown in brackets. The values stated in eachsystem may not be exact equivalents; therefore, each systemshall be used i

6、ndependently of the other. Combining valuesfrom the two systems may result in non-conformance with thestandard. The inch-pound units shall apply unless the “M”designation of this specification is specified in the order.1.4 The text of this specification contains notes and foot-notes that provide exp

7、lanatory material. Such notes and foot-notes, excluding those in tables and figures, do not contain anymandatory requirements.2. Referenced Documents2.1 ASTM Standards:2A370 Test Methods and Definitions for Mechanical Testingof Steel ProductsA700 Practices for Packaging, Marking, and Loading Meth-od

8、s for Steel Products for ShipmentA751 Test Methods, Practices, and Terminology for Chemi-cal Analysis of Steel ProductsA941 Terminology Relating to Steel, Stainless Steel, Re-lated Alloys, and Ferroalloys2.2 Military Standards:MIL-STD-129 Marking for Shipment and Storage3MIL-STD-163 Steel Mill Produ

9、cts, Preparation for Ship-ment and Storage32.3 Federal Standards:Fed. Std. No. 123 Marking for Shipment3Fed. Std. No. 183 Continuous Identification Marking ofIron and Steel Products32.4 AIAG Standard:B-1 Bar Code Symbology Standard43. Terminology3.1 DefinitionsFor definitions of terms used in this s

10、peci-fication, refer to Terminology A941.4. Ordering Information4.1 Orders for material under this specification shall containinformation concerning as many of the following items as arerequired to describe the desired material adequately:4.1.1 Quantity (feet metres or number of lengths),4.1.2 Name

11、of material (cold-formed tubing),4.1.3 Method of manufacture (seamless or welded),4.1.4 Grade (A, B, C, or D),4.1.5 Size (outside diameter and wall thickness for roundtubing, and outside dimensions and wall thickness for squareand rectangular tubing),4.1.6 Copper-containing steel (see Table 1), if a

12、pplicable,4.1.7 Length (random, multiple, specific; see 11.3),4.1.8 End condition (see 16.3),4.1.9 Burr removal (see 16.3),4.1.10 Certification (see Section 18),4.1.11 ASTM specification designation and year of issue,4.1.12 End use,1This specification is under the jurisdiction of ASTM Committee A01

13、on Steel,Stainless Steel and Related Alloys and is the direct responsibility of SubcommitteeA01.09 on Carbon Steel Tubular Products.Current edition approved Oct. 1, 2010. Published November 2010. Originallyapproved in 1964. Last previous edition approved in 2010 as A500/A500M10.DOI: 10.1520/A0500_A0

14、500M-10a.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3Available from Standardization Documents Order Desk

15、, Bldg. 4 Section D, 700Robbins Ave., Philadelphia, PA 19111-5094, Attn: NPODS.4Available from Automotive Industry Action Group (AIAG), 26200 Lahser Rd.,Suite 200, Southfield, MI 48033, http:/www.aiag.org.1*A Summary of Changes section appears at the end of this standard.Copyright ASTM International

16、, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.4.1.13 Special requirements, and4.1.14 Bar coding (see 19.3).5. Process5.1 The steel shall be made by one or more of the followingprocesses: open-hearth, basic-oxygen, or electric-furnace.5.2 When steels of differe

17、nt grades are sequentially strandcast, the steel producer shall identify the resultant transitionmaterial and remove it using an established procedure thatpositively separates the grades.6. Manufacture6.1 The tubing shall be made by a seamless or weldingprocess.6.2 Welded tubing shall be made from f

18、lat-rolled steel bythe electric-resistance-welding process. The longitudinal buttjoint of welded tubing shall be welded across its thickness insuch a manner that the structural design strength of the tubingsection is assured.NOTE 2Welded tubing is normally furnished without removal of theinside flas

19、h.6.3 Except as required by 6.4, it shall be permissible for thetubing to be stress relieved or annealed.6.4 Grade D tubing shall be heat treated at a temperature ofat least 1100 F 590 C for one hour per inch 25 mm ofthickness.7. Heat Analysis7.1 Each heat analysis shall conform to the requirementss

20、pecified in Table 1 for heat analysis.8. Product Analysis8.1 The tubing shall be capable of conforming to therequirements specified in Table 1 for product analysis.8.2 If product analyses are made, they shall be made usingtest specimens taken from two lengths of tubing from each lotof 500 lengths, o

21、r fraction thereof, or two pieces of flat-rolledstock from each lot of a corresponding quantity of flat-rolledstock. Methods and practices relating to chemical analysis shallbe in accordance with Test Methods, Practices, and Terminol-ogy A751. Such product analyses shall conform to the require-ments

22、 specified in Table 1 for product analysis.8.3 If both product analyses representing a lot fail toconform to the specified requirements, the lot shall be rejected.8.4 If only one product analysis representing a lot fails toconform to the specified requirements, product analyses shallbe made using tw

23、o additional test specimens taken from the lot.Both additional product analyses shall conform to the specifiedrequirements or the lot shall be rejected.9. Tensile Requirements9.1 The material, as represented by the test specimen, shallconform to the requirements as to tensile properties prescribedin

24、 Table 2.10. Flattening Test10.1 The flattening test shall be made on round structuraltubing. A flattening test is not required for shaped structuraltubing.10.2 For welded round structural tubing, a test specimen atleast 4 in. 100 mm in length shall be flattened cold betweenparallel plates in three

25、steps, with the weld located 90 from theline of direction of force. During the first step, which is a testfor ductility of the weld, no cracks or breaks on the inside oroutside surfaces of the test specimen shall be present until thedistance between the plates is less than two-thirds of thespecified

26、 outside diameter of the tubing. For the second step,no cracks or breaks on the inside or outside parent metalsurfaces of the test specimen, except as provided for in 10.5,shall be present until the distance between the plates is lessthan one-half of the specified outside diameter of the tubing.Duri

27、ng the third step, which is a test for soundness, theflattening shall be continued until the test specimen breaks orTABLE 1 Chemical RequirementsElementComposition, %Grades A, B, andDGrade CHeatAnalysisProductAnalysisHeatAnalysisProductAnalysisCarbon, maxA0.26 0.30 0.23 0.27Manganese, maxA1.35 1.40

28、1.35 1.40Phosphorus, max 0.035 0.045 0.035 0.045Sulfur, max 0.035 0.045 0.035 0.045Copper, minB0.20 0.18 0.20 0.18AFor each reduction of 0.01 percentage point below the specified maximum forcarbon, an increase of 0.06 percentage point above the specified maximum formanganese is permitted, up to a ma

29、ximum of 1.50 % by heat analysis and 1.60 %by product analysis.BIf copper-containing steel is specified in the purchase order.TABLE 2 Tensile RequirementsRound Structural TubingGrade A Grade B Grade C Grade DTensile strength, min, psi MPa 45 000 58 000 62 000 58 000310 400 425 400Yield strength, min

30、, psi MPa 33 000 42 000 46 000 36 000230 290 315 250Elongation in 2 in. 50 mm, 25A23B21C23Bmin, %DShaped Structural TubingGrade A Grade B Grade C Grade DTensile strength, min, psi MPa 45 000 58 000 62 000 58 000310 400 425 400Yield strength, min, psi MPa 39 000 46 000 50 000 36 000270 315 345 250Elo

31、ngation in 2 in. 50 mm, 25A23B21C23Bmin, %DAApplies to specified wall thicknesses (t ) equal to or greater than 0.120 in. 3.05mm. For lighter specified wall thicknesses, the minimum elongation values shallbe calculated by the formula: percent elongation in 2 in. 50 mm = 56t + 17.5,rounded to the nea

32、rest percent. For A500M use the following formula: 2.2t + 17.5,rounded to the nearest percent.BApplies to specified wall thicknesses (t ) equal to or greater than 0.180 in. 4.57mm. For lighter specified wall thicknesses, the minimum elongation values shallbe calculated by the formula: percent elonga

33、tion in 2 in. 50 mm = 61t + 12,rounded to the nearest percent. For A500M use the following formula: 2.4t + 12,rounded to the nearest percent.CApplies to specified wall thicknesses (t ) equal to or greater than 0.120 in. 3.05mm. For lighter specified wall thicknesses, the minimum elongation values sh

34、allbe by agreement with the manufacturer.DThe minimum elongation values specified apply only to tests performed priorto shipment of the tubing.A500/A500M 10a2the opposite walls of the test specimen meet. Evidence oflaminated or unsound material or of incomplete weld that isrevealed during the entire

35、 flattening test shall be cause forrejection.10.3 For seamless round structural tubing 238 in. 60 mmspecified outside diameter and larger, a specimen not less than212 in. 65 mm in length shall be flattened cold betweenparallel plates in two steps. During the first step, which is a testfor ductility,

36、 no cracks or breaks on the inside or outsidesurfaces, except as provided for in 10.5, shall occur until thedistance between the plates is less than the value of “H”calculated by the following equation:H 5 1 1 e!t/e 1 t/D!(1)where:H = distance between flattening plates, in. mm,e = deformation per un

37、it length (constant for a given gradeof steel, 0.09 for Grade A, 0.07 for Grade B, and 0.06for Grade C),t = specified wall thickness of tubing, in. mm, andD = specified outside diameter of tubing, in. mm.During the second step, which is a test for soundness, theflattening shall be continued until th

38、e specimen breaks or theopposite walls of the specimen meet. Evidence of laminated orunsound material that is revealed during the entire flatteningtest shall be cause for rejection.10.4 Surface imperfections not found in the test specimenbefore flattening, but revealed during the first step of thefl

39、attening test, shall be judged in accordance with Section 15.10.5 When low D-to-t ratio tubulars are tested, because thestrain imposed due to geometry is unreasonably high on theinside surface at the 6 and 12 oclock locations, cracks at theselocations shall not be cause for rejection if the D-to-t r

40、atio isless than 10.11. Permissible Variations in Dimensions11.1 Outside Dimensions:11.1.1 Round Structural TubingThe outside diametershall not vary more than 60.5 %, rounded to the nearest 0.005in. 0.1 mm, from the specified outside diameter for specifiedoutside diameters 1.900 in. 48 mm and smalle

41、r, and6 0.75 %, rounded to the nearest 0.005 in. 0.1 mm, from thespecified outside diameter for specified outside diameters 2.00in. 5 cm and larger. The outside diameter measurements shallbe made at positions at least 2 in. 5 cm from the ends of thetubing.11.1.2 Square and Rectangular Structural Tub

42、ingTheoutside dimensions, measured across the flats at positions atleast 2 in. 5 cm from the ends of the tubing, shall not varyfrom the specified outside dimensions by more than theapplicable amount given in Table 3, which includes an allow-ance for convexity or concavity.11.2 Wall ThicknessThe mini

43、mum wall thickness at anypoint of measurement on the tubing shall be not more than10 % less than the specified wall thickness. The maximum wallthickness, excluding the weld seam of welded tubing, shall benot more than 10 % greater than the specified wall thickness.For square and rectangular tubing,

44、the wall thickness require-ments shall apply only to the centers of the flats.11.3 LengthStructural tubing is normally produced inrandom lengths 5 ft 1.5 m and over, in multiple lengths, andin specific lengths. Refer to Section 4. When specific lengthsare ordered, the length tolerance shall be in ac

45、cordance withTable 4.11.4 StraightnessThe permissible variation for straight-ness of structural tubing shall be18 in. times the number offeet 10 mm times the number of metres of total length dividedby 5.11.5 Squareness of SidesFor square and rectangular struc-tural tubing, adjacent sides shall be sq

46、uare (90), with apermissible variation of 62 max.11.6 Radius of CornersFor square and rectangular struc-tural tubing, the radius of each outside corner of the sectionshall not exceed three times the specified wall thickness.11.7 TwistFor square and rectangular structural tubing,the permissible varia

47、tions in twist shall be as given in Table 5.Twist shall be determined by holding one end of the tubingdown on a flat surface plate, measuring the height that eachcorner on the bottom side of the tubing extends above thesurface plate near the opposite ends of the tubing, andcalculating the twist (the

48、 difference in heights of such corners),except that for heavier sections it shall be permissible to use asuitable measuring device to determine twist. Twist measure-ments shall not be taken within 2 in. 5 cm of the ends of thetubing.12. Special Shape Structural Tubing12.1 The availability, dimension

49、s, and tolerances of specialshape structural tubing shall be subject to inquiry and negotia-tion with the manufacturer.TABLE 3 Permissible Variations in Outside Flat Dimensions forSquare and Rectangular Structural TubingSpecified Outside Large Flat Dimension,in. mmPermissible VariationsOver and Under SpecifiedOutside Flat Dimensions,Ain. mm212 65 or under 0.020 0.5Over 212 to 312 65 to 90, incl 0.025 0.6Over 312 to 512 90 to 140, incl 0.030 0.8Over

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 标准规范 > 国际标准 > ASTM

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1