ASTM B452-2009(2015) Standard Specification for Copper-Clad Steel Wire for Electronic Application《电子设施用包铜钢丝的标准规格》.pdf

上传人:progressking105 文档编号:461268 上传时间:2018-11-25 格式:PDF 页数:5 大小:87.59KB
下载 相关 举报
ASTM B452-2009(2015) Standard Specification for Copper-Clad Steel Wire for Electronic Application《电子设施用包铜钢丝的标准规格》.pdf_第1页
第1页 / 共5页
ASTM B452-2009(2015) Standard Specification for Copper-Clad Steel Wire for Electronic Application《电子设施用包铜钢丝的标准规格》.pdf_第2页
第2页 / 共5页
ASTM B452-2009(2015) Standard Specification for Copper-Clad Steel Wire for Electronic Application《电子设施用包铜钢丝的标准规格》.pdf_第3页
第3页 / 共5页
ASTM B452-2009(2015) Standard Specification for Copper-Clad Steel Wire for Electronic Application《电子设施用包铜钢丝的标准规格》.pdf_第4页
第4页 / 共5页
ASTM B452-2009(2015) Standard Specification for Copper-Clad Steel Wire for Electronic Application《电子设施用包铜钢丝的标准规格》.pdf_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、Designation: B452 09 (Reapproved 2015)Standard Specification forCopper-Clad Steel Wire for Electronic Application1This standard is issued under the fixed designation B452; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of

2、 last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the U.S. Department of Defense.1. Scope1.1 This specification covers bare

3、round copper-clad steelwire for electronic application.1.2 Four classes of copper-clad steel wire are covered asfollows:1.2.1 Class 30HSNominal 30 % conductivity hard-drawn,1.2.2 Class 30ANominal 30 % conductivity annealed,1.2.3 Class 40HSNominal 40 % conductivity hard-drawn,and1.2.4 Class 40ANomina

4、l 40 % conductivity annealed.1.3 The values stated in inch-pound units are to be regardedas the standard. The values given in parentheses are in SI units.2. Referenced Documents2.1 The following documents of the issue in effect on thedate of material purchase form a part of this specification to the

5、extent referenced herein:2.2 ASTM Standards:2B193 Test Method for Resistivity of Electrical ConductorMaterials2B258 Specification for Nominal Diameters and Cross-SectionalAreas ofAWG Sizes of Solid Round Wires Usedas Electrical Conductors22.3 National Institute of Standards and Technology:NBS Handbo

6、ok 100Copper Wire Tables33. Ordering Information3.1 Orders for material under this specification shall includethe following information:3.1.1 Quantity of each size and class,3.1.2 Wire size, diameter in inches (see 5.3 and Table 1),3.1.3 Class of wire (see 1.2 and Table 1),3.1.4 Packaging and shippi

7、ng (Section 10),3.1.5 If inspection is required (see 6.3.3), and3.1.6 Place of inspection (see 6.1).4. Material4.1 The wire shall consist of a core of homogeneousopen-hearth, electric-furnace, or basic-oxygen steel with acontinuous outer cladding of copper thoroughly bonded to thecore throughout and

8、 shall be of such quality as to meet therequirements of this specification (Note 1).NOTE 1The copper-clad steel wire provides a high-strength conductorfor use in wire and cable where greater strength is required and a lowerconductivity can be tolerated. At high frequencies the reduced conductiv-ity

9、is less pronounced due to concentration of the current in the outerperiphery of the wire. Minimum thickness of 6 % and 10 % of the radiusfor 30 and 40 % conductivity material, respectively, has been establishedto facilitate the inspection of thickness on fine wires.5. General Requirements5.1 Tensile

10、 Strength and ElongationThe copper-clad steelwire shall conform to the tensile strength and elongationrequirements of Table 1. For intermediate sizes not listed inTable 1, the elongation requirements of the next smaller sizeshall apply; in the case of tensile strength, the requirements ofthe next la

11、rger size shall apply.5.2 ResistivityThe electrical resistivity at a temperature of20C shall not exceed the values prescribed in Table 2. SeeNote 2 for calculating electrical resistance.NOTE 2Relationships which may be useful in connection with thevalues of electrical resistivity prescribed in this

12、specification are shown inTable 3. Resistivity units are based on the International Annealed CopperStandard (IACS) adopted by IEC in 1913, which is158 mm2/m at 20Cfor 100 % conductivity. The value of 0.017241 mm2/m and the value of0.15328 g/m2at 20C are respectively the international equivalent ofvo

13、lume and weight resistivity of annealed copper equal to 100 %conductivity. The latter term means that a copper wire 1 in. in length andweighing 1 g would have a resistance of 0.15328 . This is equivalent toa resistivity value of 875.20 lb/mile2, which signifies the resistance ofa copper wire 1 mile

14、in length weighing 1 lb. It is also equivalent, forexample, to 1.7241 /cm of length of a copper bar 1 cm2in cross section.A complete discussion of this subject is contained in NBS Handbook 100.The use of five significant figures in expressing resistivity does not implythe need for greater accuracy o

15、f measurement than that specified in Test1This specification is under the jurisdiction of ASTM Committee B01 onElectrical Conductors and is the direct responsibility of Subcommittee B01.06 onComposite Conductors.Current edition approved April 1, 2015. Published April 2015. Originallyapproved in 1967

16、. Last previous edition approved in 2009 as B452 09. DOI:10.1520/B0452-09R15.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page ont

17、he ASTM website.3Available from National Institute of Standards and Technology (NIST), 100Bureau Dr., Stop 1070, Gaithersburg, MD 20899-1070, http:/www.nist.gov.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States1Method B193. The use of f

18、ive significant figures is required for completereversible conversion from one set of resistivity units to another.5.3 Dimensions and Permissible VariationsThe wire sizesshall be expressed as the diameter of the wire in decimalfractions of an inch to the nearest 0.0001 in. (0.003 mm) (Note3). For di

19、ameters under 0.0100 in. (0.254 mm), the wire shallnot vary from the specified diameter by more than 60.0001 in.(0.003 mm) and for diameters of 0.0100 in. (0.254 mm) andover, the wire shall not vary from the specified diameter bymore than 61 %, expressed to the nearest 0.0001 in. (0.003mm).NOTE 3The

20、 values of the wire diameters in Table 1 are given to thenearest 0.0001 in. (0.003 mm) and correspond to the standard sizes givenin Specification B258. The use of gage numbers to specify wire sizes is notrecognized in this specification because of the possibility of confusion.Anexcellent discussion

21、of wire gages and related subjects is contained in NBSHandbook 100.5.4 Adhesion and Other DefectsThe copper-clad steelwire, when tested in accordance with 7.4, shall not reveal anyseams, pits, slivers, or other imperfection of sufficient magni-tude to indicate inherent defects or imperfections. Exam

22、inationof the wire at the break with the unaided eye (normal spectaclesexcepted) shall show no separation of copper from the steel.5.5 JointsNecessary joints in the wire and rods prior tofinal drawing shall be made in accordance with good commer-cial practice. The finished wire shall contain no join

23、ts or splicesmade at finished size.5.6 FinishThe wire shall be free from copper discontinui-ties and all imperfections not consistent with good commercialpractice (see 7.5).5.7 Copper ThicknessThe average copper thickness mustbe sufficient to meet the maximum resistivity values stated inTable 2. The

24、 minimum copper thickness at any point aroundthe circumference shall be not less than the following:5.7.1 The 30 % conductivity wire shall have a minimumthickness of not less than 6 % of the wire radius.5.7.2 The 40 % conductivity wire shall have a minimumthickness of not less than 10 % of the wire

25、radius (see 7.6 andNote 3).TABLE 1 Tensile and Elongation RequirementsDiameter Cross-Sectional Area at 20C Tensile Strength, psi (kgf/mm2)Elongation, min.%in10in.(250 mm)in. mm cmil in.2mm2Class 30HS, min Class 30A, min Class 40HS, min Class 40A, minClass30HS and40HSClass30A and40A0.0720 1.83 5180 0

26、.00407 2.63 127 000 (89.3) 50 000 (35.2) 110 000 (77.3) 45 000 (31.6) 1.5 150.0641 1.63 4110 0.00323 2.08 127 000 (89.3) 50 000 (35.2) 110 000 (77.3) 45 000 (31.6) 1.5 150.0571 1.45 3260 0.00256 1.65 127 000 (89.3) 50 000 (35.2) 110 000 (77.3) 45 000 (31.6) 1.5 150.0508 1.29 2580 0.00203 1.31 127 00

27、0 (89.3) 50 000 (35.2) 110 000 (77.3) 45 000 (31.6) 1.5 150.0453 1.15 2050 0.00161 1.04 127 000 (89.3) 50 000 (35.2) 110 000 (77.3) 45 000 (31.6) 1.5 150.0403 1.02 1620 0.00128 0.823 127 000 (89.3) 50 000 (35.2) 110 000 (77.3) 45 000 (31.6) 1.0 150.0359 0.912 1290 0.00101 0.653 127 000 (89.3) 50 000

28、 (35.2) 110 000 (77.3) 45 000 (31.6) 1.0 150.0320 0.813 1020 0.000804 0.519 127 000 (89.3) 50 000 (35.2) 110 000 (77.3) 45 000 (31.6) 1.0 150.0285 0.724 812 0.000638 0.412 127 000 (89.3) 55 000 (38.7) 110 000 (77.3) 50 000 (35.2) 1.0 150.0253 0.643 640 0.000503 0.324 127 000 (89.3) 55 000 (38.7) 110

29、 000 (77.3) 50 000 (35.2) 1.0 150.0226 0.574 511 0.000401 0.259 127 000 (89.3) 55 000 (38.7) 110 000 (77.3) 50 000 (35.2) 1.0 150.0201 0.511 404 0.00317 0.205 127 000 (89.3) 55 000 (38.7) 110 000 (77.3) 50 000 (35.2) 1.0 100.0179 0.455 320 0.000252 0.162 127 000 (89.3) 55 000 (38.7) 110 000 (77.3) 5

30、0 000 (35.2) 1.0 100.0159 0.404 253 0.000199 0.128 127 000 (89.3) 55 000 (38.7) 110 000 (77.3) 50 000 (35.2) 1.0 100.0142 0.361 202 0.000158 0.102 127 000 (89.3) 55 000 (38.7) 110 000 (77.3) 50 000 (35.2) 1.0 100.0126 0.320 159 0.000125 0.0804 127 000 (89.3) 55 000 (38.7) 110 000 (77.3) 50 000 (35.2

31、) 1.0 100.0113 0.287 128 0.000100 0.0647 127 000 (89.3) 55 000 (38.7) 110 000 (77.3) 50 000 (35.2) 1.0 100.0100 0.254 100 0.0000785 0.0507 127 000 (89.3) 55 000 (38.7) 110 000 (77.3) 50 000 (35.2) 1.0 100.0089 0.226 79.2 0.0000622 0.0401 127 000 (89.3) 55 000 (38.7) 110 000 (77.3) 50 000 (35.2) 1.0

32、100.0080 0.203 64.0 0.0000503 0.0324 127 000 (89.3) 55 000 (38.7) 110 000 (77.3) 50 000 (35.2) 1.0 100.0071 0.180 50.4 0.0000396 0.0255 127 000 (89.3) 55 000 (38.7) 110 000 (77.3) 50 000 (35.2) 1.0 100.0063 0.160 39.7 0.0000312 0.0201 127 000 (89.3) 55 000 (38.7) 110 000 (77.3) 50 000 (35.2) 1.0 100

33、.0056 0.142 31.4 0.0000246 0.0159 127 000 (89.3) 55 000 (38.7) 110 000 (77.3) 50 000 (35.2) 1.0 100.0050 0.127 25.0 0.0000196 0.0127 127 000 (89.3) 55 000 (38.7) 110 000 (77.3) 50 000 (35.2) 1.0 100.0045 0.114 20.2 0.0000159 0.0103 127 000 (89.3) 55 000 (38.7) 110 000 (77.3) 50 000 (35.2) 1.0 100.00

34、40 0.102 16.0 0.0000126 0.00811 127 000 (89.3) 55 000 (38.7) 110 000 (77.3) 50 000 (35.2) 1.0 100.0035 0.089 12.2 0.00000962 0.00621 127 000 (89.3) 55 000 (38.7) 110 000 (77.3) 50 000 (35.2) 1.0 100.0031 0.079 9.61 0.00000755 0.00487 127 000 (89.3) 55 000 (38.7) 110 000 (77.3) 50 000 (35.2) 1.0 10TA

35、BLE 2 Resistivity, max, at 20CClass of Wire mm2/m30HS and 30A40HS and 40A0.05862 (0.058616)0.04397 (0.043970)B452 09 (2015)26. Inspection6.1 GeneralAll tests and inspections shall be made at theplace of manufacture unless otherwise agreed upon betweenthe manufacturer and the purchaser at the time of

36、 the purchase.The manufacturer shall afford the inspector representing thepurchaser all reasonable facilities to satisfy him that thematerial is being furnished in accordance with this specifica-tion (Note 4).NOTE 4Cumulative results secured on the product of a singlemanufacturer, indicating continu

37、ed conformance to the criteria, arenecessary to ensure an overall product meeting the requirements of thisspecification. The sample sizes and conformance criteria given for thevarious characteristics are applicable only to lots produced under theseconditions.6.1.1 Unless otherwise agreed by the manu

38、facturer and thepurchaser, conformance of the wire to the various requirementslisted in Section 5 shall be determined on samples taken fromeach lot of wire presented for acceptance.6.1.2 The manufacturer shall, if requested prior toinspection, certify that all wire in the lot was made under suchcond

39、itions that the product as a whole conforms to therequirements of this specification as determined by regularlymade and recorded tests.6.2 Definitions:6.2.1 lotany amount of wire of one class and size pre-sented for acceptance at one time, such amount, however, notto exceed 10 000 lb (4500 kg) (Note

40、 5).NOTE 5A lot should comprise material taken from a product regularlymeeting the requirements of this specification. Inspection of individuallots of less than 500 lb (230 kg) of wire cannot be justified economically.For small lots of 500 lb (230 kg) or less, the purchaser may agree to themanufactu

41、rers regular inspection of the product as a whole as evidence ofacceptability of such small lots.6.2.2 samplea quantity of production units (coils, reels,etc.) selected at random from the lot for the purpose ofdetermining conformance of the lot to the requirements of thisspecification.6.2.3 specimen

42、a length of wire removed for test purposesfrom any individual production unit of the sample.6.3 Sample SizeThe number of production units in asample (see Note 4) shall be as follows:6.3.1 For tensile strength, elongation, resistivity, and adhe-sion and other defects, the sample shall consist of four

43、production units. For surface finish the sampling shall be inaccordance with Table 4. From each unit, one test specimen ofsufficient length shall be removed for the performance of therequired tests.6.3.2 For dimensional measurements, the sample shall con-sist of a quantity of production units shown

44、in Table 5 underheading “First Sample.”6.3.3 For packaging inspection (when specified by thepurchaser at the time of placing the order), the sample shallconsist of a quantity of production units as shown in Table 4.7. Test Methods7.1 Tensile Strength and ElongationThe tensile strength,expressed in p

45、ounds per square inch (or kilograms-force persquare millimetre), shall be obtained by dividing the maximumload carried by the specimen during the tension test, by theoriginal cross-sectional area of the specimen. Tensile strengthand elongation may be determined simultaneously on the samespecimen.7.1

46、.1 For Classes 30A and 40A, the elongation of wire maybe determined as the permanent increase in length, expressedin percent of the original length, due to the breaking of the wirein tension, measured between gage marks placed originally 10in. (250 mm) apart upon the test specimen (Note 6). Theelong

47、ation of wire shall be determined as described above orby measurements made between the jaws of the testingmachine. When the latter method is used, the zero length shallbe the distance between the jaws at the start of the tension testwhen 10 % of the minimum specified breaking load has beenapplied a

48、nd be as near 10 in. (250 mm) as practicable, and thefinal length shall be the distance between the jaws at the timeof rupture. The fracture shall be between gage marks in thecase of specimens so marked or between the jaws of the testingmachine and not closer than 1 in. (25 mm) to either gage markor

49、 either jaw.NOTE 6It is known that the rate of loading during tension testingaffects the performance of the sample to a greater or lesser extentdepending upon many factors. In general, tested values of tensile strengthare increased and tested values of elongation are reduced with increase ofspeed of the moving head of the testing machine. In the case of tests onsoft or annealed wire, however, the effects of speed of testing are notpronounced. Tests of soft wire made at speeds of moving head whichunder no-load conditions are not greater th

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 标准规范 > 国际标准 > ASTM

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1