1、Designation: C1294 07 (Reapproved 2011)Standard Test Method forCompatibility of Insulating Glass Edge Sealants with Liquid-Applied Glazing Materials1This standard is issued under the fixed designation C1294; the number immediately following the designation indicates the year oforiginal adoption or,
2、in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method covers a laboratory procedure forquantitatively measuring the co
3、mpatibility of liquid-appliedglazing materials with an insulating glass unit edge sealant.Compatibility is determined by measuring the changes in theinsulating glass edge sealant adhesive and cohesive properties.Hereinafter insulating glass is referred to as IG.1.2 This test method does not address
4、the issue of theintegrity of the hermetic seal or changes to the vision area in anIG unit. Such factors as possible unit fogging or primarysealant reaction in a dual-seal system due to volatile compo-nents permeating the IG sealant are not considered in this testmethod.1.3 The committee with jurisdi
5、ction over this standard is notaware of any comparable standards published by other orga-nizations.1.4 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and healt
6、h practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2C717 Terminology of Building Seals and SealantsC1265 Test Method for Determining the Tensile Propertiesof an Insulating Glass Edge Seal for Structural GlazingApplications3.
7、Terminology3.1 DefinitionsRefer to Terminology C717 for definitionsof the following terms: adhesive failure, cohesive failure,compatibility, compound, elongation, glazing, seal, sealant,substrate.4. Summary of Test Method4.1 This test method includes the measurement of tensileforce, elongation, and
8、percent cohesive or adhesive failure andobservations of the specimens general physical appearanceand observation of elongation.4.2 Test specimens are exposed to 70C (158F) heat forfour weeks while contacting the liquid-applied glazing materialbeing evaluated.4.2.1 Control specimens are exposed only
9、to the 70C(158F) heat.4.3 Compatibility is determined by comparing the measuredand observed properties of the test specimens to the controlsamples.5. Significance and Use5.1 Liquid-applied glazing materials, bedding sealants,glazing compounds (that is, glazing sealants) are designed toprovide a seal
10、 between the IG unit and the window or wallframing. Frequently there is physical contact between thesematerials and an IG unit edge sealant. Depending on theparticular IG unit edge sealant, there can be a detrimentalphysical or chemical interaction between it and the liquid-applied glazing material.
11、 Detrimental effects may include:weakening, softening, hardening, or adhesive failure of the IGedge sealant, or visual obstruction inside the IG unit.6. Apparatus and Accessory Materials6.1 Oven, forced draft, capable of maintaining a constanttemperature of 70 6 3C (158 6 5F).6.2 Tensile Testing Mac
12、hine, capable of producing a tensileload on the specimen at the rate of 5 6 0.51 mm (0.2 6 0.02in.) per minute.6.2.1 Fixed MemberA fixed or essentially stationarymember carrying one grip.6.2.2 Moveable MemberA moveable member carrying asecond grip.6.2.3 GripsThe grips should be suitable to firmly gr
13、aspthe test fixture that holds the test specimen and should bedesigned to eliminate eccentric specimen loading. Specimenloading should be parallel to the centerline of the short axis ofthe sealant. A swivel or universal joint near each end of thespecimen should be provided for alignment purposes.1Th
14、is test method is under the jurisdiction ofASTM Committee C24 on BuildingSeals and Sealants and is the direct responsibility of Subcommittee C24.20 onGeneral Test Methods.Current edition approved Dec. 1, 2011. Published December 2011. Originallyapproved in 1995. Last previous edition approved in 200
15、7 as C1294071. DOI:10.1520/C1294-07R11.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.1Copyright ASTM Intern
16、ational, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.6.2.4 Grip FixtureA fixture capable of being held by thegrips and furnishing a tensile force to and maintaining properalignment with the test specimen.6.3 Spatulas, for use in mixing and applying sealant.6.4
17、 Paper Cup or Can, for use in mixing multicomponentsealants when applicable.6.5 Plastic Cartridge, (Semco), to extrude sealant whenapplicable.6.6 Triple-Beam or Electronic Balance, accurate to 60.01 g(3.5 by 104oz) for weighing multicomponent sealant mixesand finished test specimens.6.7 Glass Substr
18、ates, clear float glass, 6 by 25 by 75 mm(0.25 by 1 by 3 in.).Atotal of ten substrates is required for eachglazing material tested.6.8 Spacer, nominally 13 mm (0.50 in.) wide IG, aluminumspacer with preferably an anodized aluminum surface. Spacersshould be cut into 50-mm (2-in.) lengths.6.9 Test Fix
19、ture (Fig. 1) to hold the specimen componentsin place while the IG sealant is applied and cured.6.10 Aluminum Foil, standard kitchen wrapping foil issuitable.6.11 Container, a shallow aluminum or glass pan or tray issuitable. The container must be large enough to hold all the testspecimens. A contai
20、ner is required for each combination of IGedge sealant and liquid-applied glazing material compoundbeing tested.7. Specimen Preparation7.1 Prepare a set of five test specimen assemblies for eachIG edge sealant or liquid-applied glazing material, or both,being tested.7.2 Construction of the test spec
21、imens is done by placingthe 13 by 50-mm (0.50 by 2-in.) IG spacers into the recesses inthe test fixture. The glass substrates are installed on either sideof the spacer and the assembly is clamped together withmachine screws through the ends of the side bars. The testfixture holds the samples station
22、ary while the IG edge sealantis applied. The IG edge sealant siteline should be approxi-mately 6 mm (0.25 in.) after the specimen is prepared.7.3 Take special care to strike off the sealant flush with theglass substrates.7.4 Cure the test specimens for a total of 7 days at 22 6 2C(72 6 2F) and 50 %
23、relative humidity.7.5 The samples should be removed from the test fixtureafter the end of the first day of the seven-day cure period.7.6 Measure the width and length of the sealant contact areain millimetres (inches) with the glass substrates for use incalculating the tensile strength of the assembl
24、y per unit area.8. Procedure8.1 Spread the liquid-applied glazing material onto thebottom of the aluminum or glass pan to a thickness ofapproximately 6 mm (0.25 in.).8.2 Press sealed edges of three of the IG edge specimensinto the liquid-applied glazing material to a depth of approxi-mately 1.6 mm (
25、0.0625 in.).8.3 Cover the container with aluminum foil and place in theoven for four weeks at 70 6 2C (158F).8.4 Place the remaining two control specimens into anotherfoil-covered container with no liquid-applied glazing materialand place in the oven for four weeks at 70 6 2C (158 6 3F).One set of c
26、ontrol specimens are sufficient for each IG edgeFIG. 1 Sample Assembly IG Compatibility TestC1294 07 (2011)2sealant when more than one liquid-applied glazing material isbeing tested. Do not expose more than one IG edge sealantcontrol or one type of liquid-applied glazing material in asingle containe
27、r.8.5 After four weeks in the oven, remove the containersfrom the oven and condition at 22 6 2C (70 6 3F) and 50 %relative humidity for a minimum of 1 h and a maximum of 24h.8.6 Following the conditioning, remove the aluminum foilfrom the top of the pan. Carefully trim the liquid-appliedglazing mate
28、rial from the outside face of the three testspecimens. Take care not to disturb the IG edge sealant.8.7 Further condition the specimens for a minimum of 1 hbut not more than4hat226 2C (70 6 3F) and 50 %relatively humidity.8.8 After completion of conditioning, observe the test speci-mens for softenin
29、g, tackiness, adhesive failure, swelling, crack-ing, or any other observed difference in the IG edge sealantspecimens from the control specimens.8.9 After observation, pull each specimen on a tensile testmachine at a rate of 5 mm (0.2 in.) per minute. Record thetensile load in newtons (pounds-force)
30、 of the PIB peak, theelongation in millimetres (inches) at PIB peak and maximumelongation in millimetres (inches) at failure. Determine thepercent of cohesive failure. Refer to Test Method C1265 toview a typical stress strain graph of this procedure.9. Report9.1 Observations and test results are rep
31、orted on the formshown in Fig. 2.9.2 Report the following information:9.2.1 Any variation from the test method (for instance, achange in curing or conditioning cycles).9.2.2 The actual IG edge sealant minimum contact area, inmm2(in.2).9.2.3 Tensile force at the PIB peak and at ultilmate failure,in N
32、 (lbf).9.2.4 Calculate the tensile stress in pascals (lbf/in2)atfailure.9.2.5 Elongation in millimetres (inches) of movement atPIB peak and at failure. Percent elongation cannot be calcu-lated due to variable sealant thickness in each specimen.Elongation for this test method is total sample movement
33、 priorto failure.FIG. 2 Compatibility Test FormC1294 07 (2011)39.2.6 The mode of failure in percent cohesive/adhesivefailure on each substrate.9.2.7 Any observation from 8.8.10. Precision and Bias310.1 A statistical analysis made from the results obtainedfrom a round-robin test of the tensile proper
34、ties in which eachof four laboratories tested two glazing sealants and two IGedge sealants in accordance with the prescribed test for theeffect of the glazing sealant on the edge sealant resulted in thefollowing:10.1.1 The repeatability (within a given laboratory) intervalfor two materials tested by
35、 four laboratories is 34.63 N (7.79lb). In future use of this test method, the difference betweentwo test results obtained in the same laboratory on the samematerial will be expected to exceed 34.63 N only about 5 % ofthe time.10.1.2 The reproducibility (between given laboratories) twomaterials test
36、ed by four laboratories is 103.9 N (23.4 lb). Infuture use of this test method, the difference between two testresults obtained in a different laboratory on the same materialwill be expected to exceed 103.9 N only about 5 % of the time.11. Keywords11.1 bedding sealant; compatibility; glazing sealant
37、; insu-lating glass; sealant.ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentionedin this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the riskof inf
38、ringement of such rights, are entirely their own responsibility.This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years andif not revised, either reapproved or withdrawn. Your comments are invited either for revision of this stand
39、ard or for additional standardsand should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of theresponsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you shouldmake your vi
40、ews known to the ASTM Committee on Standards, at the address shown below.This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959,United States. Individual reprints (single or multiple copies) of this standard may be obtained by contact
41、ing ASTM at the aboveaddress or at 610-832-9585 (phone), 610-832-9555 (fax), or serviceastm.org (e-mail); or through the ASTM website(www.astm.org). Permission rights to photocopy the standard may also be secured from the ASTM website (www.astm.org/COPYRIGHT/).3Supporting data have been filed at ASTM International Headquarters and maybe obtained by requesting Research Report RR:D24-1049C1294 07 (2011)4