ASTM D3874-2013 Standard Test Method for Ignition of Materials by Hot Wire Sources《用电热丝法测量材料着火性的标准试验方法》.pdf

上传人:progressking105 文档编号:515689 上传时间:2018-12-02 格式:PDF 页数:5 大小:80.63KB
下载 相关 举报
ASTM D3874-2013 Standard Test Method for Ignition of Materials by Hot Wire Sources《用电热丝法测量材料着火性的标准试验方法》.pdf_第1页
第1页 / 共5页
ASTM D3874-2013 Standard Test Method for Ignition of Materials by Hot Wire Sources《用电热丝法测量材料着火性的标准试验方法》.pdf_第2页
第2页 / 共5页
ASTM D3874-2013 Standard Test Method for Ignition of Materials by Hot Wire Sources《用电热丝法测量材料着火性的标准试验方法》.pdf_第3页
第3页 / 共5页
ASTM D3874-2013 Standard Test Method for Ignition of Materials by Hot Wire Sources《用电热丝法测量材料着火性的标准试验方法》.pdf_第4页
第4页 / 共5页
ASTM D3874-2013 Standard Test Method for Ignition of Materials by Hot Wire Sources《用电热丝法测量材料着火性的标准试验方法》.pdf_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、Designation: D3874 13 An American National StandardStandard Test Method forIgnition of Materials by Hot Wire Sources1This standard is issued under the fixed designation D3874; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the yea

2、r of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope*1.1 This test method is intended to differentiate, in apreliminary fashion, among materials with respect to theirres

3、istance to ignition because of their proximity to electrically-heated wires and other heat sources.21.2 This test method applies to molded or sheet materialsavailable in thicknesses ranging from 0.25 to 6.4 mm (0.010 to0.25 in.).1.3 This test method applies to materials that are rigid atnormal room

4、temperatures. That is, it applies to materials forwhich the specimen does not deform during preparation,especially during the wire-wrapping step described in 10.1.Examples of deformation that render this test method inappli-cable include:1.3.1 Bowing, in either a transverse or a longitudinaldirectio

5、n, or twisting of the specimen, during the wire-wrapping step, to a degree visible to the eye.1.3.2 Visible indentation of the wrapped wire into thespecimen.1.4 The values stated in SI units are to be regarded as thestandard. The inch-pound units given in parentheses are forinformation only. (See SI

6、10 for further details.)1.5 This test method measures and describes the response ormaterials, products, or assemblies to heat and flame undercontrolled conditions, but does not by itself incorporate allfactors required for fire hazard or fire risk assessment of thematerials, products, or assemblies

7、under actual fire conditions.1.6 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations

8、 prior to use.1.7 Fire testing is inherently hazardous. Adequate safe-guards for personnel and property shall be employed inconducting these tests.NOTE 1Although this test method and IEC 60695-2-20, differ inapproach and in detail, data obtained using either are technically equiva-lent.2. Referenced

9、 Documents2.1 ASTM Standards:3D1711 Terminology Relating to Electrical InsulationE176 Terminology of Fire StandardsIEEE/ASTM SI-10 American National Standard for MetricPractice2.2 IEC Standards:IEC 60695-2-20 Fire Hazard TestingSection 20: Glowing/Hot-wire Based Test Methods, Hot-wire Coil Ignitabil

10、ityTest on Materials4IEC 60695-4 Fire Hazard TestingPart 4: TerminologyConcerning Fire Tests42.3 ISO StandardsISO 13943 Fire SafetyVocabulary53. Terminology3.1 Definitions:3.1.1 Use Terminology E176 and ISO 13943 and IEC60695-4 for definitions of terms used in this test method andassociated with fir

11、e issues. Where differences exist indefinitions, those contained in Terminology E176 shall be used.Use Terminology D1711 for definitions of terms used in thistest method and associated with electrical insulation materials.3.2 Definitions of Terms Specific to This Standard:3.2.1 ignition, ninitiation

12、 of flaming produced by combus-tion in the gaseous phase that is accompanied by the emissionof light.1This test method is under the jurisdiction of ASTM Committee D09 onElectrical and Electronic Insulating Materials and is the direct responsibility ofSubcommittee D09.21 on Fire Performance Standards

13、.Current edition approved Nov. 1, 2013. Published December 2013. Originallyapproved in 1988. Last previous edition approved in 2012 as D3874120. DOI:10.1520/D3874-13.2K. N. Mathes, Chapter 4, “Surface Failure Measurements”, EngineeringDielectrics, Vol. IIB, Electrical Properties of Solid Insulating

14、Materials, Measure-ment Techniques, R. Bartnikas, Editor, ASTM STP 926, ASTM, Philadelphia, 1987.3For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Docum

15、ent Summary page onthe ASTM website.4Available from International Electrotechnical Commission (IEC), 3 rue deVaremb, Case postale 131, CH-1211, Geneva 20, Switzerland, http:/www.iec.ch.5Available from International Organization for Standardization (ISO), 1, ch. dela Voie-Creuse, Case postale 56, CH-

16、1211, Geneva 20, Switzerland, http:/www.iso.ch.*A Summary of Changes section appears at the end of this standardCopyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States14. Summary of Test Method4.1 In this test method, a rectangular bar-shaped

17、 testspecimen, with the center portion wrapped with a coil of heaterwire, is supported horizontally at both ends. The circuit is thenenergized by applying a fixed power density to the heater wire,which rapidly heats up. The behavior of the test specimen isobserved. until one of the following happens

18、: (a) the materialunder test ignites, (b) the material under test melts, (c) 120 s ofexposure have gone by without ignition or melting. The time toignition and the time to melt through, as applicable, arerecorded.5. Significance and Use5.1 During operation of electrical equipment, includingwires, re

19、sistors, and other conductors, it is possible for over-heating to occur, under certain conditions of operation, or whenmalfunctions occur. When this happens, a possible result isignition of the insulation material.5.2 This test method assesses the relative resistance ofelectrical insulating material

20、s to ignition by the effect of hotwire sources.5.3 This test method determines the average time, inseconds, required for material specimens to ignite under thespecified conditions of test.5.4 This method is suitable to characterize materials, subjectto the appropriate limitations of an expected prec

21、ision of615 %, to categorize materials.5.5 In this procedure the specimens are subjected to one ormore specific sets of laboratory conditions. If different testconditions are substituted or the end-use conditions arechanged, it is not always possible by or from this test to predictchanges in the fir

22、e-test-response characteristics measured.Therefore, the results are valid only for the fire test exposureconditions described in this procedure.6. Apparatus6.1 Heater WireThe heater wire shall be a No. 24 AWG,Nichrome (Nickel-Chrome) wire, that is iron free, with thefollowing nominal properties: a w

23、ire composition of 20 %chromium-80 % nickel, a diameter of 0.5 mm (0.020 in.), anominal cold resistance of 5.28 /m (1.61/ft), and a length-to-mass ratio of 580 m/kg (864 ft/lb).6.2 Calibrate each spool of test wire for energizedresistance, in accordance with the method outlined in AnnexA1. Such cali

24、bration is necessary due to the typical variabilityof wire lots in composition, processing, sizing, and metallurgy.6.3 Supply CircuitThe supply circuit, which is a means forelectrically energizing the heater wire, shall comply with 6.3.1 6.3.4.6.3.1 The supply circuit capacity shall be sufficient to

25、maintain a continuous linear 50 to 60 Hz power density of atleast 0.31 W/mm (8.0 W/in.) over the length of the heater wireat or near unity power factor. The power density of the supplycircuit at 60 A and 1.5 V shall approximate 0.3 W/mm.6.3.2 The supply circuit shall have a means of voltageadjustmen

26、t to achieve the desired current as determined fromAnnex A1. Such means of voltage adjustment shall provide asmooth and continuous adjustment of the power level.6.3.3 The supply circuit shall have a means of voltageadjustment of measuring the power to within 62%.6.3.4 The test circuit shall be provi

27、ded with an easilyactuated on-off switch for the test power, and with timers torecord the duration of the application of test power.6.4 Test ChamberUse as a test chamber a draft-free closedchamber having a volume of at least 0.3 m3(10.5 ft3). The ratiobetween any two transverse dimensions of the cha

28、mber shallnot exceed 2.5. The test chamber shall be positively vented tothe outside of the test facility before and after the test, but itshall remain closed and unvented during the test. The chambershall be equipped with an observation window.6.5 Test FixtureTwo supporting posts shall be positioned

29、70 mm (234 in.) apart to support the specimen in a horizontalposition, at a height of 60 mm (238 in.) above the bottom of thetest chamber, in the approximate center of the test chamber.6.6 Specimen-Winding FixtureA fixture shall be providedto uniformly position the wire, with a spacing of 6.35 6 0.0

30、5mm (0.250 6 0.002 in.) between turns and with a windingtension of 5.4 6 0.02 N (1.21 6 0.0045 lbf).7. Safety Precautions7.1 It is possible that fumes and products of incompletecombustion are liberated from the specimen when conductingthis test. Avoid the inhalation of such fumes and products ofcomb

31、ustion and exhaust them from the test chamber after eachrun.7.2 Take precautions to safeguard the health of personnelagainst the risk of explosion or fire, the inhalation of smoke, orother products of combustion, or the exposure to the residuespotentially remaining on the specimen after testing.8. T

32、est Specimens8.1 The test specimen shall consist of a bar measuring 12.56 0.2 by 125 6 5mm(12 by 5 in.) and of the thickness to betested.9. Conditioning9.1 Condition the specimens and heater wire as follows:9.1.1 Sample ConditioningPrior to testing, maintain thesamples in a dry condition. If this is

33、 not practical, dry thesamples in an air-circulating oven at 70 6 2C (158 6 3.5F)for seven days and cool over a desiccant, such as silica gel, fora minimum of 4 h. Prior to testing, condition the dry samplesfor at least 40 h at 23 6 2C (73 6 3.5F) and 50 6 5%relative humidity. Maintain the test faci

34、lities at 50 6 5%relative humidity and 23C.9.1.2 Heater Wire Conditioning and CalibrationFor eachtest, use a length of previously calibrated wire measuringapproximately 250 mm (10 in.). Prior to testing, anneal eachstraight length by energizing the wire to dissipate 0.26 W/mmof length (6.5 W/in. of

35、length) for 8 to 12 s to relieve theinternal stresses within the wire. Calibrate the wire in accor-dance with Annex A1 to determine the correct current level.D3874 13210. Procedure10.1 Wrap the center portion of the test specimen with a testwire, conditioned in accordance with 9.1.2, using the windi

36、ngfixture as specified in 6.6 and a winding force of 5.4 6 0.02 N(1.21 6 0.0045 lbf). Apply five complete turns spaced 6.35 60.05 mm (14 in.) between turns.10.2 Position the specimen on the test fixture such that thelength and width are horizontal. Securely connect the free endsof the wire to the te

37、st circuit. The connection is to be capableof transmitting the test power without significant losses, andinsofar as possible, not mechanically affect the specimenduring the test.10.3 Start the test by energizing the circuit to dissipate 0.26W/mm (6.5 W/in.) through the nickel-chrome wire. The 0.26W/

38、mm shall be maintained during the test.10.4 Continue heating until the test specimen ignites (see3.2.1). When ignition occurs, shut off the power and record thetime to ignition. Discontinue the test if ignition does not occurwithin 120 s. For specimens that melt through the wire withoutignition, dis

39、continue the test when the specimen is no longer inintimate contact with all five turns of the heater wire.10.5 Note the following observations:10.5.1 The time to ignition of each specimen, and10.5.2 The time for each specimen to melt through the wireif appropriate.11. Report11.1 Report the followin

40、g information:11.1.1 Complete identification of the material tested includ-ing type, source, and manufacturers code number,11.1.2 Testing room conditions,11.1.3 Number of specimens tested,11.1.4 Thickness of specimens tested,11.1.5 Time to ignition for each specimen or the time atwhich the wire turn

41、s no longer contact the specimen,11.1.6 Calculation and record of the average time forignition,11.1.7 Calibrated test current, and11.1.8 Geometry of test chamber.12. Precision and Bias12.1 It is likely that, when care is taken to adhere to this testmethod, the average determined will fall within 615

42、 % of thevalue obtained by an interlaboratory evaluation.12.2 A statement of bias for this test method is not practi-cable since there is no standard reference material availablewith a known characteristic of true resistance to ignition.13. Keywords13.1 hot wire; ignition; resistance to ignitionANNE

43、X(Mandatory Information)A1. TEST WIRE CALIBRATIONA1.1 GeneralA1.1.1 Due to normal variations in metals, it is essential thateach spool of test wire be calibrated with respect to energizedresistance according to the following procedure. A mathemati-cal relationship is developed between current and po

44、werdissipation, based on performance under the calibration experi-ment. Essentially, the voltage over a carefully measured lengthof wire, and the current through the wire are measured over arange of values to establish the power-current relationship. Ithas been found that the variation of electrical

45、 resistance of thetest wire within the spool is not significant.A1.2 Apparatus and EquipmentA1.2.1 Position approximately 250 mm (10 in.) of test wireas a horizontal open loop connected to the supply contacts ofthe hot wire ignition equipment (see Fig. A1.1). Place anammeter in the circuit. Fit a vo

46、ltmeter with small voltage-measuring probes for measuring voltage across a measuredlength of the wire.A1.3 ProcedureA1.3.1 Position the voltmeter probes near the ends of thetest wire prior to connecting the wire, with the wire in ahorizontal straight position. Carefully measure and record thelength

47、of the wire between the contact points of the clips.FIG. A1.1 Test ApparatusD3874 133Connect the wire to the test apparatus and energize to currentlevels, from 1 to 8 A in increments of 1 A. Record current andvoltage at each level.A1.4 CalculationA1.4.1 For each measurement, calculate the linear pow

48、erdensity as follows:W 5EILwhere:W = linear power density, W/mm (or W/in.),E = measured voltage, V,I = measured current, A, andL = measured length between voltage clips, mm (or in.).A1.4.2 Construct a calibration curve of current as a functionof linear power density. The desired calibrated current f

49、or thegiven spool of test wire is then obtained from a calibrationcurve as that current corresponding to 0.26 W/mm (6.5 W/in.)(see Fig. A1.2).A1.4.3 Note that when current is equal to zero, the powershall be equal to zero.D3874 134SUMMARY OF CHANGESCommittee D09 has identified the location of selected changes to this test method since the last issue,D387412, that may impact the use of this test method. (Approved November 1, 2013)(1) Revised A1.4.3.Committee D09 has identified the location of selected changes to this test method since the last issue,D3

展开阅读全文
相关资源
猜你喜欢
  • AECMA PREN 2240-051-1996 Aerospace Series Lamps Incandescent Part 051  Lamp Code 1163 Product Standard Edition P 1《航空航天系列白炽灯.第051部分 码指示灯1163产品标准.P1版》.pdf AECMA PREN 2240-051-1996 Aerospace Series Lamps Incandescent Part 051 Lamp Code 1163 Product Standard Edition P 1《航空航天系列白炽灯.第051部分 码指示灯1163产品标准.P1版》.pdf
  • AECMA PREN 2240-052-1996 Aerospace Series Lamps Incandescent Part 052  Lamp Code 1222 Product Standard Edition P 1《航空航天系列白炽灯.第052部分 码指示灯1222产品标准.P1版》.pdf AECMA PREN 2240-052-1996 Aerospace Series Lamps Incandescent Part 052 Lamp Code 1222 Product Standard Edition P 1《航空航天系列白炽灯.第052部分 码指示灯1222产品标准.P1版》.pdf
  • AECMA PREN 2240-053-1996 Aerospace Series Lamps Incandescent Part 053  Lamp Code 1308 Product Standard Edition P 1《航空航天系列白炽灯.第053部分 码指示灯1308产品标准.P1版》.pdf AECMA PREN 2240-053-1996 Aerospace Series Lamps Incandescent Part 053 Lamp Code 1308 Product Standard Edition P 1《航空航天系列白炽灯.第053部分 码指示灯1308产品标准.P1版》.pdf
  • AECMA PREN 2240-054-1996 Aerospace Series Lamps Incandescent Part 054  Lamp Code 1317 Product Standard Edition P 1《航空航天系列白炽灯.第054部分 码指示灯1317产品标准.P1版》.pdf AECMA PREN 2240-054-1996 Aerospace Series Lamps Incandescent Part 054 Lamp Code 1317 Product Standard Edition P 1《航空航天系列白炽灯.第054部分 码指示灯1317产品标准.P1版》.pdf
  • AECMA PREN 2240-055-1996 Aerospace Series Lamps Incandescent Part 055  Lamp Code 1495 Product Standard Edition P 1《航空航天系列白炽灯.第055部分 码指示灯1495产品标准.P1版》.pdf AECMA PREN 2240-055-1996 Aerospace Series Lamps Incandescent Part 055 Lamp Code 1495 Product Standard Edition P 1《航空航天系列白炽灯.第055部分 码指示灯1495产品标准.P1版》.pdf
  • AECMA PREN 2240-056-1996 Aerospace Series Lamps Incandescent Part 056  Lamp Code 1506 Product Standard Edition P 1《航空航天系列白炽灯.第056部分 码指示灯1506产品标准.P1版》.pdf AECMA PREN 2240-056-1996 Aerospace Series Lamps Incandescent Part 056 Lamp Code 1506 Product Standard Edition P 1《航空航天系列白炽灯.第056部分 码指示灯1506产品标准.P1版》.pdf
  • AECMA PREN 2240-057-1996 Aerospace Series Lamps Incandescent Part 057  Lamp Code 1512 Product Standard Edition P 1《航空航天系列白炽灯.第057部分 码指示灯1512产品标准.P1版》.pdf AECMA PREN 2240-057-1996 Aerospace Series Lamps Incandescent Part 057 Lamp Code 1512 Product Standard Edition P 1《航空航天系列白炽灯.第057部分 码指示灯1512产品标准.P1版》.pdf
  • AECMA PREN 2240-058-1996 Aerospace Series Lamps Incandescent Part 058  Lamp Code 1524 Product Standard Edition P 1《航空航天系列白炽灯.第058部分 码指示灯1524产品标准.P1版》.pdf AECMA PREN 2240-058-1996 Aerospace Series Lamps Incandescent Part 058 Lamp Code 1524 Product Standard Edition P 1《航空航天系列白炽灯.第058部分 码指示灯1524产品标准.P1版》.pdf
  • AECMA PREN 2240-059-1996 Aerospace Series Lamps Incandescent Part 059  Lamp Code 1591 Product Standard Edition P 1《航空航天系列白炽灯.第059部分 码指示灯1591产品标准.P1版》.pdf AECMA PREN 2240-059-1996 Aerospace Series Lamps Incandescent Part 059 Lamp Code 1591 Product Standard Edition P 1《航空航天系列白炽灯.第059部分 码指示灯1591产品标准.P1版》.pdf
  • 相关搜索

    当前位置:首页 > 标准规范 > 国际标准 > ASTM

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1