1、Designation: D4513 11Standard Test Method forParticle Size Distribution of Catalytic Materials by Sieving1This standard is issued under the fixed designation D4513; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last r
2、evision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method covers the determination of particlesize distribution of catalytic powder material using a sievinginstrumen
3、t and is one of several found valuable for themeasurement of particle size. This test method is particularlysuitable for particles in the 20 to 420-m range.1.2 The values stated in SI units are to be regarded asstandard. No other units of measurement are included in thisstandard.1.2.1 ExceptionIn 5.
4、2, mesh size is the standard unit ofmeasure.1.3 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulat
5、ory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2E11 Specification for Woven Wire Test Sieve Cloth and TestSievesE161 Specification for Precision Electroformed SievesE177 Practice for Use of the Terms Precision and Bias inASTM Test MethodsE456 Terminology Relating to Quality a
6、nd Statistics3. Summary of Test Method3.1 A 50 % relative humidity-equilibrated sample of knownweight is allowed to fractionate on a series of various sizesieves to allow the various particle sizes to be collected onsuccessively smaller sieve openings.3.2 The sample fraction collected on each sieve
7、of the seriesis weighed and its fractional part of the original sample isdetermined.4. Significance and Use4.1 This test method can be used to determine particle sizedistributions of catalysts and supports for materials specifica-tions, manufacturing control, and research and developmentwork.5. Appa
8、ratus5.1 Laboratory Sieving Instrument, automatic with timerpreferred.5.2 U.S. Standard Sieves, or equivalent, to include microme-tres (mesh) 425(40), 250(60), 177(80), 149(100), 105(140),74(200), 44(325) and electroformed 30 and 20 micrometres.Because of their superior uniformity and resistance to
9、distor-tion or damage during use, electroformed sieves, preferablywith square holes, are recommended. Sieves with diametersbetween 6 and 10 cm are suggested.5.3 Ultrasonic Cleaning Tank, 100 W.5.4 Transmitted Light Microscope, 300 magnification, withcalibrated scale eyepiece.5.5 Heat Gun Dryer, (hai
10、r dryer or equivalent).5.6 Analytical Balance, capable of weighing to 0.001 g.5.7 Sample Splitter, Chute Type, or Spinning Riffler, withspinning riffler preferred.6. Reagents6.1 Antistatic Coating, (record cleaning spray or equiva-lent.)6.2 Alcohol-Water SolutionOne part ethanol to nine partsdeioniz
11、ed or distilled water.7. Sampling7.1 The sample must be free-flowing and homogeneous. Ifparticle size segregation is apparent to either the eye or fromobservation under a microscope, remix and resample thematerial using the proper riffling procedure.7.2 Equilibrate the sample at 20 to 25C (68 to 77F
12、) in adesiccator with a humidity level of 50 %. A 24-h period isusually sufficient.8. Calibration and Standardization8.1 Prior to use, check all sieves for damage or impropercleaning. If woven-wire sieves are used rather than the pre-ferred electroformed sieves, it is especially important to1This te
13、st method is under the jurisdiction of ASTM Committee D32 onCatalysts and is the direct responsibility of Subcommittee D32.02 on Physical-Mechanical Properties.Current edition approved Aug. 1, 2011. Published August 2011. Originallyapproved in 1985. Last previous edition approved in 2006 as D451397(
14、2006).DOI: 10.1520/D4513-11.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.1Copyright ASTM International, 10
15、0 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.carefully inspect the wire surface for wear, misalignment, tears,creases, or separation along the edges.NOTE 1Specifications for wire cloth sieves are described in Specifi-cation E11 and specifications for electroforme
16、d sieves are described inSpecification E161.9. Procedure9.1 Select appropriate sieves for the sample being analyzed,typically the 149, 105, 74, 44, and 20-m sieves.NOTE 2For optimum results, the estimated particle size should bedetermined by microscopic examination at 100300X. Sieves may then besele
17、cted to cover the size range of the particles.9.2 Clean 44 and 20-m sieves prior to use in an ultrasonicbath using a 10 % ethanol, 90 % water mixture. Dry the sievesin a low temperature air jet (hair dryer or equivalent) and allowto equilibrate at room temperature for 30 min before obtainingthe tare
18、 weights.9.3 Tare each sieve and the fines collector pan, recordingeach weight to the nearest 0.001 g.9.4 After taring, moisten a sheet of tissue paper withantistatic spray and coat the inside wall surface of each sieveby rubbing with the coated tissue.9.5 Place the sieves in a vertical stack in des
19、cending orderby mesh size (largest on top).9.6 Weigh a suitable amount of sample obtained by riffling,normally 0.5 to 1.0 g, and transfer into the largest mesh sieveat the top of the stack.9.7 Complete the assembly of the apparatus.9.8 Turn on and adjust to provide rapid transport through thesieves.
20、9.9 Continue sieving for 2 min after no further separation isdetectable.NOTE 3After completion of sieving, none of the sieves should containmore than two to three particle layers. For most powder samples, 0.5 g ofsample provides a satisfactory quantity distribution.9.10 Stop the sieve action.9.11 Re
21、move sieves carefully and weigh each sieve and thepan separately. Note the gross weight for each one and recordabove the corresponding tare weight.9.12 Sum the weight of sample on each sieve and the pan toobtain the total weight of the recovered sample. The totalweight of recovered material should c
22、heck within 5 mg of thestarting sample weight.NOTE 4Examine the sieve fractions under a microscope to determinewhether the sieve particles in each fraction are within the size rangebetween the sieve and the next coarser sieve. If appreciable finer or coarserparticles are present, tackiness is indica
23、ted. Dry and reequilibrate thesample and repeat the analysis.10. Presentation10.1 Calculate the weight percent of sample on each sieveby multiplying the net weight of each fraction by 100 anddividing by the total weight the total weight of recoveredsample.Weight % sieve fraction 5 100 3 S 2 T!/Wwher
24、e:S = total weight after sieving, g,T = tare weight of sieve, g, andW = total weight of recovered sample, g.10.1.1 Calculate the cumulative percentage passing througheach sieve by adding its fractional percentage to the fractionalpercentage of all coarser sieves, and subtracting the total from100 %.
25、 See Table 1 for an example of the calculations andpresentation.10.2 Median Particle SizeThe median particle size maybe determined by plotting the cumulative percentage dataagainst the mesh size and determining the size correspondingto 50 %.11. Precision and Bias (Note 5)11.1 Agreement among individ
26、ual measurements was deter-mined using an equilibrium fluid cracking catalyst. Experimen-tal repeatability was measured for a number of analyses in eachof five laboratories. Experimental reproducibility was deter-mined by comparison of results from all seven of the labora-tories participating in the
27、 round-robin testing program. Pairs oftest results obtained by a procedure similar to that describedherein are expected to differ in absolute value by less than2.77S, where 2.77S is the 95 % probability limit on thedifference between two test results, and S is the appropriateestimate of standard dev
28、iation.NOTE 5Use of the terms “repeatability,” “reproducibility,” “preci-sion,” and “bias” are in accordance with Terminology E456 and PracticeE177.11.1.1 Experimental Repeatability3Repeatability is usedto designate the ability of an instrument to report the sameanswer assuming no sample bias or ope
29、rator influence. Ameasure of instrument repeatability is the standard deviation ofa number of runs. The results of testing the equilibrium fluidcatalytic cracking catalyst sample in each of five laboratoriesproduced an average standard deviation of the interpolatedweight percent median diameter of 0
30、.39 m, corresponding toa 2.77S % value of 61.7 %.11.1.2 Experimental Reproducibility3Reproducibilityamong instruments is used to measure the ability of severalinstruments to produce results which should be the same. Thisparameter takes into account any manufacturing differences ininstruments, any bi
31、as in formulating the samples, and anyoperator influence in performing the analyses. Experimental3Supporting data have been filed at ASTM International Headquarters and maybe obtained by requesting Research Report RR:D32-1015.TABLE 1 Presentation of Data Weight of Sample Used, 0.610 gSieve No.Mesh S
32、izemicronsNet Weight,gWeight %Sieve FractionCumulative %Passing100 149 0.037 6.1 93.9140 105 0.034 5.6 88.3200 74 0.083 13.6 74.7325 44 0.193 31.6 43.1635 20 0.196 32.1 11.0Pan 0.067 11.0Total weight recovered 0.610 100.0D4513 112reproducibility of the seven laboratories when analyzing theequilibriu
33、m fluid catalytic cracking catalyst sample materialresulted in a median (50th percentile) value of 64.3 m with astandard deviation of 1.9 m, corresponding to a 2.77S % valueof 68.2 %.11.2 BiasStandard reference material is not presentlyavailable for determining bias.12. Keywords12.1 catalyst; partic
34、le size; sieves; sievingASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentionedin this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the riskof infringe
35、ment of such rights, are entirely their own responsibility.This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years andif not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard o
36、r for additional standardsand should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of theresponsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you shouldmake your views k
37、nown to the ASTM Committee on Standards, at the address shown below.This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959,United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the aboveaddress or at 610-832-9585 (phone), 610-832-9555 (fax), or serviceastm.org (e-mail); or through the ASTM website(www.astm.org). Permission rights to photocopy the standard may also be secured from the ASTM website (www.astm.org/COPYRIGHT/).D4513 113