ASTM D5452-2012 9334 Standard Test Method for Particulate Contamination in Aviation Fuels by Laboratory Filtration《用实验室过滤法测定航空燃料中颗粒污染物的标准试验方法》.pdf

上传人:fatcommittee260 文档编号:519830 上传时间:2018-12-03 格式:PDF 页数:11 大小:189.94KB
下载 相关 举报
ASTM D5452-2012 9334 Standard Test Method for Particulate Contamination in Aviation Fuels by Laboratory Filtration《用实验室过滤法测定航空燃料中颗粒污染物的标准试验方法》.pdf_第1页
第1页 / 共11页
ASTM D5452-2012 9334 Standard Test Method for Particulate Contamination in Aviation Fuels by Laboratory Filtration《用实验室过滤法测定航空燃料中颗粒污染物的标准试验方法》.pdf_第2页
第2页 / 共11页
ASTM D5452-2012 9334 Standard Test Method for Particulate Contamination in Aviation Fuels by Laboratory Filtration《用实验室过滤法测定航空燃料中颗粒污染物的标准试验方法》.pdf_第3页
第3页 / 共11页
ASTM D5452-2012 9334 Standard Test Method for Particulate Contamination in Aviation Fuels by Laboratory Filtration《用实验室过滤法测定航空燃料中颗粒污染物的标准试验方法》.pdf_第4页
第4页 / 共11页
ASTM D5452-2012 9334 Standard Test Method for Particulate Contamination in Aviation Fuels by Laboratory Filtration《用实验室过滤法测定航空燃料中颗粒污染物的标准试验方法》.pdf_第5页
第5页 / 共11页
亲,该文档总共11页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、Designation: D5452 12 An American National StandardDesignation: 423/97Standard Test Method forParticulate Contamination in Aviation Fuels by LaboratoryFiltration1This standard is issued under the fixed designation D5452; the number immediately following the designation indicates the year oforiginal

2、adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the Department of Defense

3、.1. Scope*1.1 This test method covers the gravimetric determinationby filtration of particulate contaminant in a sample of aviationturbine fuel delivered to a laboratory.1.1.1 The sample is filtered through a test membrane and acontrol membrane using vacuum. The mass change differenceidentifies the

4、contaminant level per unit volume.1.2 The values stated in SI units are to be regarded as thestandard. The values given in parentheses are for informationonly.1.3 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user

5、 of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use. For specific hazardstatements, see 4.2, 7.3, 7.5, 11.2, and X1.7.2. Before using thisstandard, refer to suppliers safety labels, material safety datasheets

6、, and technical literature.2. Referenced Documents2.1 ASTM Standards:2D56 Test Method for Flash Point by Tag Closed Cup TesterD93 Test Methods for Flash Point by Pensky-MartensClosed Cup TesterD1193 Specification for Reagent WaterD1535 Practice for Specifying Color by the Munsell SystemD2244 Practic

7、e for Calculation of Color Tolerances andColor Differences from Instrumentally Measured ColorCoordinatesD2276 Test Method for Particulate Contaminant in AviationFuel by Line SamplingD3828 Test Methods for Flash Point by Small Scale ClosedCup TesterD4306 Practice for Aviation Fuel Sample Containers f

8、orTests Affected by Trace ContaminationD4865 Guide for Generation and Dissipation of Static Elec-tricity in Petroleum Fuel SystemsD6615 Specification for Jet B Wide-Cut Aviation TurbineFuel3. Terminology3.1 Definitions:3.1.1 bond, vto connect two parts of a system electricallyby means of a bonding w

9、ire to eliminate voltage differences.3.1.2 ground, vtto connect electrically with ground(earth).3.1.3 membrane filter, na porous article of closely con-trolled pore size through which a liquid is passed to separatematter in suspension.3.1.3.1 DiscussionResearch Report RR:D02-10123con-tains informati

10、on on membrane filters that meet the require-ments therein.3.1.4 particulate, adjof or relating to minute separateparticles.3.1.4.1 DiscussionSolids generally composed of oxides,silicates, and fuel insoluble salts.3.1.5 volatile fuelsrelatively wide boiling range volatiledistillate.1This test method

11、 is under the jurisdiction of ASTM Committee D02 onPetroleum Products and Lubricants and is the direct responsibility of SubcommitteeD02.J0.05 on Fuel Cleanliness.Current edition approved June 1, 2012. Published October 2012. Originallyapproved in 1993. Last previous edition approved in 2008 as D545

12、208. DOI:10.1520/D5452-12.This test method has been separated from D2276 and has been modifiedprimarily to establish improved safety measures.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards vol

13、ume information, refer to the standards Document Summary page onthe ASTM website.3Supporting data (including a list of suppliers who have provided data indicatingtheir membranes, field monitors, and field monitor castings) have been filed atASTM International Headquarters and may be obtained by requ

14、esting ResearchReport RR:D02-1012.*A Summary of Changes section appears at the end of this standardCopyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States13.1.5.1 DiscussionThese are identified as Jet B in Speci-fication D6615 or the military

15、 grade known as JP-4. Any fuelor mixture having a flash point less than 38C is considered tobe volatile.4. Summary of Test Method4.1 A known volume of fuel is filtered through a pre-weighed test membrane filter and the increase in membranefilter mass is weight determined after washing and drying. Th

16、echange in weight of a control membrane located immediatelybelow the test membrane filter is also determined. The objec-tive of using a control membrane is to assess whether the fuelitself influences the weight of a membrane. The particulatecontaminant is determined from the increase in mass of the

17、testmembrane relative to the control membrane filter.4.2 In order to ensure safety in handling, the test methodrequires that volatile fuels be transferred from the samplecontainer to the funnel without pouring using a support standshown in Fig. 1. Fuels having a verified flash point greater than38C

18、(refer to Test Method D56 or Test Methods D93 orD3828) may be transferred by pouring the sample from thesample container directly into the funnel. Bonding of a metallicsample container to the funnel is required. (WarningVolatilefuels such as JP-4 and Jet B or mixtures having flash pointsbelow 38C ha

19、ve been ignited by electrostatic discharges whenpoured through membrane filters.)4.3 Appendix X2 describes safety precautions to avoidstatic discharge in filtering fuel through membranes.5. Significance and Use5.1 This test method provides a gravimetric measurement ofthe particulate matter present i

20、n a sample of aviation turbinefuel delivered to a laboratory for evaluation. The objective is tominimize these contaminants to avoid filter plugging and otheroperational problems. Although tolerable levels of particulatecontaminants have not yet been established for all points in fueldistribution sy

21、stems, the total contaminant measurement isnormally of most interest.FIG. 1 Apparatus for Determining Total ContaminantD5452 1226. Apparatus6.1 Analytical Balance, single- or double-pan, the precisionstandard deviation of which must be 0.07 mg or better.6.2 Oven, of the static type (without fan-assi

22、sted aircirculation), controlling to 90 6 5C.6.3 Petri Dishes, approximately 125 mm in diameter withremovable glass supports for membrane filters.6.4 Forceps, flat-bladed with unserrated, non-pointed tips.6.5 Vacuum System.6.6 Test Membrane Filters,3,4plain, 47-mm diameter,nominal pore size 0.8 m (s

23、ee Note 1).6.7 Control Membrane Filters,3,447-mm diameter, nominalpore size 0.8 m. (Gridded control membrane filters may beused for purpose of identification.)NOTE 1Matched weight membrane filters,447-mm diameter, nominalpore size 0.8 m, may be used as test and control membrane filters if sodesired.

24、 Use of matched-weight membrane filters precludes the necessityfor carrying out subsequently the procedures detailed in Section 10.6.8 Dispenser for Filtered Flushing Fluid, 0.45-m mem-brane filters to be provided in the delivery line (see Fig. 2).Alternatively, flushing fluid that has been pre-filt

25、ered through a0.45 m membrane before delivery to the dispenser flask isacceptable.6.9 Air Ionizer, for the balance case. See Note 2 and Note 3.NOTE 2When using a solid-pan balance, the air ionizer may beomitted provided that, when weighing a membrane filter, it is placed onthe pan so that no part pr

26、otrudes over the edge of the pan.NOTE 3Air ionizers should be replaced within 1 year of manufacture.6.10 Filtration Apparatus, of the type shown in Fig. 1.Itconsists of a filter funnel and a funnel base with a filter supportsuch that a membrane filter can be gripped between the sealingsurface and th

27、e base by means of a locking ring. Use a metalfunnel with at least a 70-mm diameter at the top.6.11 Support Stand, (required when the sample flash point islower than 38C) as shown in Fig. X3.1, having adjustableheight, integral spill collection pan at the base, and an edge onthe can shelf to prevent

28、 the can from slipping off. The shelf isslotted. Refer to Fig. X3.1 for fabrication details.6.12 Dispensing Cap or Plug, (required when the sampleflash point is lower than 38C) with approximately 9.5-mminside diameter hose barb 32-mm long on which a 75 to100-mm long piece of fuel resistant, flexible

29、, plastic tubing isinstalled (see Fig. 1). The plug is for sample containers having34 in. (19 mm) female pipe threads while the cap is forcontainers having 1.75 in. (44 mm) diameter sheet metalthreads. Dispensing spouts for other containers must be fabri-cated. The closure gasket shall be made of a

30、fuel resistantmaterial. A paper composition material is not acceptable.6.13 Sample Container, should be a 3.8 to 5-L (1-gal) epoxylined sample can, preferably the same container in which thesample was collected and should conform to the criteria setforth in Practice D4306. When samples are collected

31、 in asmaller container than recommended here, select a containerthat does not trap particles when the contents are poured out.6.14 Receiving Flask, shall be glass or metal. A graduatedglass flask is preferred so that the space remaining for fuel canbe observed. The filtration apparatus is fitted to

32、the top of theflask. The flask shall be fitted with a side arm to connect thevacuum system. The flask should be large enough to containthe sample and flushing fluids.6.15 Safety Flask, shall be glass containing a sidearmattached to the receiving flask with a fuel and solvent resistantrubber hose and

33、 shall be connected to the vacuum system.6.16 Ground/Bond Wire, #10#19 (0.9122.59 mm) barestranded flexible, stainless steel or copper installed in the flasksand grounded as shown in Fig. 1. If a metallic flask(s) is usedinstead of glass, the flask(s) must be grounded.6.17 Plastic Film, polyethylene

34、 or any other clear film notadversely affected by flushing fluids. Refer to Appendix X4.6.18 Multimeter/VOM, used for determining whether elec-trical continuity is 10 ohms or less between 2 points.4All available membrane filters are not suitable for this application. Apparatusconsidered for this app

35、lication shall be checked by the user for suitability inaccordance with the requirements of RR:D02-1012, 1994 revision.FIG. 2 Apparatus for Filtering and Dispensing Flushing FluidD5452 1237. Reagents7.1 Purity of ReagentsReagent grade chemicals shall beused in all tests. Unless otherwise indicated,

36、it is intended thatall reagents shall conform to the specifications of the Commit-tee on Analytical Reagents of the American Chemical Society,where such specifications are available.5Other grades may beused, provided it is first ascertained that the reagent is ofsufficiently high purity to permit it

37、s use without lessening theaccuracy of the determination.7.2 Purity of WaterUnless otherwise indicated referencesto water shall be understood to mean reagent water as definedby Type III of Specification D1193.7.3 Isopropyl Alcohol, (WarningFlammable.)7.4 Liquid Detergent, water-soluble.7.5 Flushing

38、FluidsPetroleum spirit (also known as pe-troleum ether or IP Petroleum Spirit 40/60), having boilingrange from 35 to 60C. (WarningExtremely flammable.Harmful if inhaled. Vapors are easily ignited by electrostaticdischarges, causing flash fire. See Appendix X2.)7.6 Filtered Flushing FluidsFiltered fl

39、uids are fluids fil-tered through a nominal 0.45-m membrane filter. Filteredflushing fluids are most conveniently obtained by means of thedispenser described in Fig. 2.8. Sampling8.1 All containers and their closures shall be thoroughlycleaned in accordance with Practice D4306.8.2 To obtain a repres

40、entative sample from a fuel stream andto avoid external contamination, the sample may be drawnfrom the flushing fitting of a field sampling kit (see TestMethod D2276). Ensure that the line is first flushed with thefuel to be sampled and that the line is externally clean.8.3 Whether or not a sampling

41、 kit is available, suitableprecautions shall be taken to avoid sample contamination bythe use of a suitable sampling point in accordance with TestMethod D2276. If the quick-disconnect sampling connection isnot used, a stainless steel ball or plug type valve should beselected as its internal design a

42、voids the possibility of trappingor generating solid contaminant. Samples that are collected forgeneral laboratory or chemical analysis are not necessarilysuitable for this test method because insufficient care may havebeen taken to avoid particulate contamination.8.4 Where possible a 3.8 to 5-L (1-

43、gal) fuel sample shouldbe taken, preferably in the same container that will be used inthe test to avoid the need to transfer from one container toanother with increased possibility of contamination. Ideally, asample to be tested should be collected in a single containerand transferred to the laborat

44、ory for testing. If the sample iscollected in small containers such as glass bottles and thenshipped to the laboratory, the collection containers shall behandled in a way to flush particulates into the transportcontainer which should be UN/ICAO approved for publictransport. Results obtained by takin

45、g other sample volumes canhave different precisions.8.5 The sample volume shall be quoted with the results. Ifthe sample was transferred from one container to anotherbefore the test was performed, this shall also be noted with thetest results.9. Preparation of Apparatus and Sample Containers9.1 Clea

46、n all components of the filtration apparatus, includ-ing the funnels, filter base, forceps, petri dishes, dispensing capor plug and tubing (from 6.12) as described in 9.1.2-9.1.6.9.1.1 Remove any labels, tags, and so forth.9.1.2 Wash with warm tap water containing detergent.9.1.3 Rinse thoroughly wi

47、th warm tap water.9.1.4 Rinse thoroughly with reagent water. Container capsshould be handled only externally with clean laboratorycrucible tongs during this and subsequent washing.9.1.5 Rinse thoroughly with filtered isopropyl alcohol.9.1.6 Rinse thoroughly with filtered flushing fluid.9.1.7 For spe

48、cial cleanliness procedures in facilities that canhave airborne dust, see Appendix X4.10. Preparation of Test and Control Membrane Filters10.1 Two 47-mm membrane filters of nominal pore size0.8-m are required: a test and a control membrane filter.Matched-weight membrane filters may be used if so des

49、ired(see Note 1). If matched-weight membrane filters are used, it isunnecessary to carry out the procedures detailed in this sectionbecause they had been carried out previously by the membranefilter supplier. The two membrane filters used for each indi-vidual test should be identified by marking the petri dishes usedas containers. Clean glassware used in preparation of mem-brane filters must be cleaned as described in 9.1. Refer toAppendix X4.10.1.1 Using forceps, place the test and control membranefilters side by side in a clean petri dish. To f

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 标准规范 > 国际标准 > ASTM

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1