1、Designation: F1361 07 (Reapproved 2013) An American National StandardStandard Test Method forPerformance of Open Deep Fat Fryers1This standard is issued under the fixed designation F1361; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revis
2、ion, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method covers the evaluation of the energyconsumption and cooking performance of open, deep
3、 fat fryers.The food service operator can use this evaluation to select afryer and understand its energy efficiency and productioncapacity.1.2 This test method is applicable to both counter and floormodel gas and electric units with nominal frying mediumcapacity less than 60 lb (27 kg). For large va
4、t fryers with anominal frying medium capacity greater than 60 lb (27 kg),refer to Test Method F2144.1.3 The fryer can be evaluated with respect to the following(where applicable):1.3.1 Energy input rate (10.2),1.3.2 Preheat energy and time (10.4),1.3.3 Idle energy rate (10.5),1.3.4 Pilot energy rate
5、 (10.6),1.3.5 Cooking energy rate and efficiency (10.10), and1.3.6 Production capacity and frying medium temperaturerecovery time (10.10).1.4 This test method is not intended to answer all perfor-mance criteria in the evaluation and selection of a fryer, such asthe significance of a high energy inpu
6、t design on maintenanceof temperature within the cooking zone of the fryer.1.5 The values stated in inch-pound units are to be regardedas the standard. The values given in parentheses are forinformation only.1.6 This standard does not purport to address all of thesafety concerns, if any, associated
7、with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2D3588 Practice for Calculating Heat Value, CompressibilityFactor
8、, and Relative Density of Gaseous FuelsF2144 Test Method for Performance of Large Open VatFryers2.2 ANSI Document:3ANSI Z83.11 American National Standard for Gas FoodService Equipment2.3 ASHRAE Document:4ASHRAE Guideline 2-1986 (RA90) Engineering Analysisof Experimental Data3. Terminology3.1 Definit
9、ions:3.1.1 open, deep fat fryer, n(hereafter referred to as fryer)an appliance, including a cooking vessel, in which oils areplaced to such a depth that the cooking food is essentiallysupported by displacement of the cooking fluid rather than bythe bottom of the vessel. Heat delivery to the cooking
10、fluidvaries with fryer models.3.1.2 test method, na definitive procedure for theidentification, measurement, and evaluation of one or morequalities, characteristics, or properties of a material, product,system, or service that produces a test result.3.2 Definitions of Terms Specific to This Standard
11、:3.2.1 cold zone, nthe volume in the fryer below theheating element or heat exchanger surface designed to remaincooler than the cook zone.3.2.2 cook zone, nthe volume of oil in which the fries arecooked. Typically, the entire volume from just above theheating element(s) or heat exchanger surface to
12、the surface ofthe frying medium.1This test method is under the jurisdiction of ASTM Committee F26 on FoodService Equipment and is the direct responsibility of Subcommittee F26.06 onProductivity and Energy Protocol.Current edition approved June 1, 2013. Published August 2013. Originallyapproved in 19
13、91. Last previous edition approved in 2007 as F1361 07. DOI:10.1520/F1361-07R13.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page
14、onthe ASTM website.3Available from American National Standards Institute (ANSI), 25 W. 43rd St.,4th Floor, New York, NY 10036.4Available from the American Society of Heating, Refrigeration, and AirConditioning Engineers, Inc., 1791 Tullie Circle, NE, Atlanta, GA 30329.Copyright ASTM International, 1
15、00 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States13.2.3 cooking energy, ntotal energy consumed by the fryeras it is used to cook french fries under heavy- and light-loadconditions.3.2.4 cooking-energy effciency, nquantity of energy to theFrench fries during the cooki
16、ng process expressed as a per-centage of the quantity of energy input to the fryer during theheavy- and light-load tests.3.2.5 cooking energy rate, naverage rate of energy con-sumed by the fryer while “cooking” a heavy- or light-load ofFrench fries.3.2.6 idle energy rate, naverage rate of energy con
17、sumed(Btu/h (kJ/h) or kW) by the fryer while “holding” or “idling”the frying medium at the thermostat(s) set point.3.2.7 measured energy input rate, npeak rate at which afryer consumes energy, typically reflected during preheat.3.2.8 pilot energy rate, naverage rate of energy consump-tion (Btu/h (kJ
18、/h) by a fryers continuous pilot (if applicable).3.2.9 preheat energy, namount of energy consumed (Btu(kJ) or kWh) by the fryer while preheating the frying mediumfrom ambient room temperature to the calibrated thermostat(s)set point.3.2.10 preheat time, ntime required for the frying mediumto preheat
19、 from ambient room temperature to the calibratedthermostat(s) set point.3.2.11 production capacity, nmaximum rate (lb/h (kg/h)at which a fryer can bring the specified food product to aspecified “cooked” condition.3.2.12 production rate, naverage rate (lb/h (kg/h) atwhich a fryer brings the specified
20、 food product to a specified“cooked” condition. Does not necessarily refer to maximumrate. Production rate varies with the amount of food beingcooked.3.2.13 recovery time, nthe time from the removal of thefry basket containing the French fries until the cookingmedium is back up to within 10F (5.56C)
21、 of the settemperature and the fryer is ready to be reloaded.3.2.14 test, na set of six loads of French fries cooked in aprescribed manner and sequential order.3.2.15 uncertainty, nmeasure of systematic and precisionerrors in specified instrumentation or measure of repeatabilityof a reported test re
22、sult.4. Summary of Test MethodNOTE 1All of the fryer tests shall be conducted with the fryer installedunder a wall-mounted canopy exhaust ventilation hood that shall operateat an air flow rate based on 300 cfm per linear foot (460 L/s per linearmetre) of hood length. Additionally, an energy supply m
23、eeting themanufacturers specifications shall be provided for the gas or electric fryerunder test.4.1 The fryer under test is connected to the appropriatemetered energy source. The measured energy input rate isdetermined and checked against the rated input before continu-ing with testing.4.2 The fryi
24、ng-medium temperature in the cook zone of thefryer is monitored at a location chosen to represent the averagetemperature of the frying-medium while the fryer is “idled” at350F (177C). Fryer temperature calibration to 350F (177C)is achieved at the location representing the average temperatureof the f
25、rying medium.4.3 The preheat energy and time, and idle-energy consump-tion rate are determined while the fryer is operating with thethermostat(s) set at a calibrated 350F (177C). The rate ofpilot energy consumption also is determined when applicableto the fryer under test.4.4 Energy consumption and
26、time are monitored while thefryer is used to cook six loads of frozen,14-in. (6-mm)shoestring potatoes to a condition of 30 6 1 % weight loss withthe thermostat set at a calibrated 350F (177C). Cooking-energy efficiency is determined for heavy- and light-load testconditions. Production capacity is b
27、ased on the heavy-load test.5. Significance and Use5.1 The measured energy input rate test is used to confirmthat the fryer under test is operating in accordance with itsnameplate rating.5.2 Fryer temperature calibration is used to ensure that thefryer being tested is operating at the specified temp
28、erature.Temperature calibration also can be used to evaluate andcalibrate the thermostat control dial.5.3 Preheat-energy consumption and time can be used byfood service operators to manage their restaurants energydemands, and to estimate the amount of time required forpreheating a fryer.5.4 Idle ene
29、rgy and pilot energy rates can be used by foodservice operators to manage their energy demands.5.5 Preheat energy consumption, idle energy, and pilotenergy can be used to estimate the energy consumption of anactual food service operation.5.6 Cooking-energy efficiency is a direct measurement offryer
30、efficiency at different loading scenarios. This data can beused by food service operators in the selection of fryers, as wellas for the management of a restaurants energy demands.5.7 Production capacity can be used as a measure of fryercapacity by food service operators to choose a fryer to matchthe
31、ir particular food output requirements.6. Apparatus6.1 watt-hour meter, for measuring the electrical energyconsumption of a fryer, shall have a resolution of at least 10Wh and a maximum uncertainty no greater than 1.5 % of themeasured value for any demand greater than 100 W. For anydemand less than
32、100 W, the meter shall have a resolution of atleast 10 Wh and a maximum uncertainty no greater than 10 %.6.2 gas meter, for measuring the gas consumption of a fryer,shall be a positive displacement type with a resolution of atleast 0.01 ft3(0.0003 m3) and a maximum error no greater than1 % of the me
33、asured value for any demand greater than 2.2 ft3(0.06 m3) per hour. If the meter is used for measuring the gasconsumed by the pilot lights, it shall have a resolution of atleast 0.01 ft3(0.0003 m3) and have a maximum error no greaterthan 2 % of the measured value.F1361 07 (2013)26.3 thermocouple pro
34、be(s), industry standard Type T orType K thermocouples capable of immersion, with a rangefrom 50 to 400F and an uncertainty of 61F (0.56C).6.4 analytical balance scale, for measuring weights up to 10lb, with a resolution of 0.01 lb (0.004 kg) and an uncertainty of0.01 lb.6.5 convection drying oven,
35、with temperature controlled at220 6 5F (100 6 3C), to be used to determine moisturecontent of both the raw and cooked fries.6.6 canopy exhaust hood, 4 ft (1.2 m) in depth, wall-mounted with the lower edge of the hood 6 ft, 6 in. (1.98 m)from the floor and with the capacity to operate at a nominal ne
36、texhaust ventilation rate of 300 cfm per linear foot (460 L/s perlinear metre) of active hood length. This hood shall extend aminimum of 6 in. (152 mm) past both sides and the front of thecooking appliance and shall not incorporate side curtains orpartitions. Makeup air shall be delivered through fa
37、ce registersor from the space, or both.6.7 fry basket, supplied by the manufacturer of the fryerunder testing, shall be a nominal size of 638 by 12 by 538 in.(160 by 300 by 140 mm). A total of six baskets are required totest each fryer in accordance with these procedures.6.8 freezer, with temperatur
38、e controlled at 5 6 5F (20 63C), with capacity to cool all fries used in a test.6.9 barometer, for measuring absolute atmospheric pressure,to be used for adjustment of measured gas volume to standardconditions. Shall have a resolution of 0.2 in. Hg (670 Pa) andan uncertainty of 0.2 in. Hg (670 Pa).6
39、.10 data acquisition system, for measuring energy andtemperatures, capable of multiple temperature displays updat-ing at least every 2 s.6.11 pressure gauge, for monitoring gas pressure. Shallhave a range from 0 to 15 in. H2O (0 to 3.7 kPa), a resolutionof 0.5 in. H2O (125 Pa), and a maximum uncerta
40、inty of 1 % ofthe measured value.6.12 stopwatch, with a 1-s resolution.6.13 temperature sensor, for measuring gas temperature inthe range from 50 to 100F (10 to 93C) with an uncertainty of61F (0.56C).7. Reagents and Materials7.1 French Fries (Shoestring Potatoes)Order a sufficientquantity of French
41、fries to conduct both the French frycook-time determination test and the heavy- and light-loadcooking tests.All cooking tests are to be conducted using14-in.(6-mm) blue ribbon product, par-cooked, frozen, shoestringpotatoes. Fat and moisture content of the French fries shall be6 6 1 % by weight and
42、68 6 2 % by weight, respectively.7.2 frying medium, shall be partially hydrogenated, 100 %pure vegetable oil. New frying medium shall be used for eachfryer tested in accordance with this test method. The newfrying medium that has been added to the fryer for the first timeshall be heated to 350F (177
43、C) at least once before any testis conducted.NOTE 2Generic partially hydrogenated all vegetable oil (soybean oil)has been shown to be an acceptable product for testing by PG energy; fryer; performance; production ca-pacity; test method; throughput5Development and Application of a Uniform Testing Pro
44、cedure for Fryers,Pacific Gas and Electric Company, November 1990.F1361 07 (2013)10ANNEXES(Mandatory Information)A1. PROCEDURE FOR DETERMINING THE UNCERTAINTY IN REPORTED TEST RESULTSNOTE A1.1This procedure is based on the ASHRAE method fordetermining the confidence interval for the average of sever
45、al test results(ASHRAE Guideline 2-1986 (RA90). It should only be applied to testresults that have been obtained within the tolerances prescribed in thismethod (for example, thermocouples calibrated and the appliance operat-ing within 5 % of rated input during the test run).A1.1 For the cooking-ener
46、gy efficiency and productioncapacity results, the uncertainty in the averages of at least threetest runs is reported. For each loading scenario, the uncertaintyof the cooking-energy efficiency and production capacity mustbe no greater than 610 % before any of the parameters for thatloading scenario
47、can be reported.A1.2 The uncertainty in a reported result is a measure of itsprecision. If, for example, the production capacity for theappliance is 30 lb/h (13.6 kg/h), the uncertainty must not begreater than 63 lb/h (61.4 kg/h). Thus, the true productioncapacity is between 27 and 33 lb/h (12.2 and
48、 15 kg/h). Thisinterval is determined at the 95 % confidence level, whichmeans that there is onlya1in20chance that the trueproduction capacity could be outside of this interval.A1.3 Calculating the uncertainty not only guarantees themaximum uncertainty in the reported results, but is also used todet
49、ermine how many test runs are needed to satisfy thisrequirement. The uncertainty is calculated from the standarddeviation of three or more test results and a factor from TableA1.1, which lists the number of test results used to calculate theaverage. The percent uncertainty is the ratio of the uncertaintyto the average expressed as a percent.A1.4 Procedure:NOTE A1.2Section A1.5 shows how to apply this procedure.A1.4.1 Step 1Calculate the average and the standarddeviation for the test result (cooking-energy efficiency orp