1、Designation: F 1510 07An American National StandardStandard Specification forRotary Positive Displacement Pumps, Ships Use1This standard is issued under the fixed designation F 1510; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision,
2、the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon (e) indicates an editorial change since the last revision or reapproval.1. Scope1.1 This specification defines the requirements applicable todesign and construction of rotary positive displ
3、acement pumpsfor shipboard use. The classes of service are shown in Section4.1.2 This specification will not include pumps for hydraulicservice or cargo unloading applications.2. Referenced Documents2.1 ASTM Standards:2A 27/A 27M Specification for Steel Castings, Carbon, forGeneral ApplicationA 36/A
4、 36M Specification for Carbon Structural SteelA 48/A 48M Specification for Gray Iron CastingsA 53/A 53M Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and SeamlessA 159 Specification for Automotive Gray Iron CastingsA 193/A 193M Specification for Alloy-Steel and StainlessSt
5、eel Bolting Materials for High Temperature or HighPressure Service and Other Special Purpose ApplicationsA 194/A 194M Specification for Carbon and Alloy SteelNuts for Bolts for High Pressure or High TemperatureService, or BothA 322 Specification for Steel Bars, Alloy, Standard GradesA 354 Specificat
6、ion for Quenched and Tempered AlloySteel Bolts, Studs, and Other Externally Threaded Fasten-ersA 395/A 395M Specification for Ferritic Ductile IronPressure-Retaining Castings for Use at Elevated Tempera-turesA 434 Specification for Steel Bars, Alloy, Hot-Wrought orCold-Finished, Quenched and Tempere
7、dA 449 Specification for Hex Cap Screws, Bolts and Studs,Steel, Heat Treated, 120/105/90 ksi Minimum TensileStrength, General UseA 515/A 515M Specification for Pressure Vessel Plates,Carbon Steel, for Intermediate- and Higher-TemperatureServiceA 536 Specification for Ductile Iron CastingsA 563 Speci
8、fication for Carbons and Alloy Steel NutsA 564/A 564M Specification for Hot-Rolled and Cold-Finished Age-Hardening Stainless Steel Bars and ShapesA 574 Specification for Alloy Steel Socket-Head CapScrewsA 582/A 582M Specification for Free-Machining StainlessSteel BarsA 743/A 743M Specification for C
9、astings, Iron-Chromium,Iron-Chromium-Nickel, Corrosion Resistant, for GeneralApplicationB 150M Specification for Aluminum Bronze, Rod, Bar, andShapes Metric3B 584 Specification for Copper Alloy Sand Castings forGeneral ApplicationsD 1418 Practice for Rubber and Rubber LaticesNomenclatureD 2000 Class
10、ification System for Rubber Products in Auto-motive ApplicationsD 3951 Practice for Commercial PackagingF 104 Classification System for Nonmetallic Gasket Mate-rialsF 912 Specification for Alloy Steel Socket Set ScrewsF 1511 Specification for Mechanical Seals for ShipboardPump Applications2.2 ANSI S
11、tandard:4B 16.5 Pipe Flanges and Flanged Fittings2.3 SAE Standards:5AS 568A Aerospace Size Standard for O-RingsJ 429 Mechanical and Material Requirements for ExternallyThreaded Fasteners2.4 AMS Standard:53215 Acrylonitrile Butadiene (NBR) Rubber Aromatic FuelResistant 65-751This specification is und
12、er the jurisdiction of ASTM Committee F25 on Shipsand Marine Technology and is the direct responsibility of Subcommittee F25.11 onMachinery and Piping Systems.Current edition approved Dec. 1, 2007. Published December 2007. Originallyapproved in 1994. Last previous edition approved in 2006 as F 1510
13、01(2006).2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3Withdrawn.4Available from American National Standar
14、ds Institute (ANSI), 25 W. 43rd St.,4th Floor, New York, NY 10036, http:/www.ansi.org.5Available from Society of Automotive Engineers (SAE), 400 CommonwealthDr., Warrendale, PA 15096-0001, http:/www.sae.org.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 1942
15、8-2959, United States.2.5 ABMA Standards:69 Load Ratings and Fatigue Life for Ball Bearings11 Load Ratings and Fatigue Life for Roller Bearings2.6 AGMA Standard:7390.03 Gear Classification, Materials and Measuring Meth-ods for Unassembled Gears2.7 API Standard:8676 Positive Displacement PumpsRotary2
16、.8 Military Standards:9MIL-S-901MIL-STD-167MIL-STD-7403. Terminology3.1 Definitions:3.1.1 capacitythe quantity of fluid actually delivered perunit of time at the rated speed, including both the liquid anddissolved or entrained gases, under stated operating conditions.In the absence of any gas or vap
17、or entering or forming withinthe pump, the capacity is equal to the volume displaced per unitof time, less slip.3.1.2 capacity, maximumthe quantity of fluid deliveredthat does not exceed the limit determined by the formula in 9.2.3.1.3 displacementthe volume displaced per revolution ofthe rotor(s).
18、In pumps incorporating two or more rotorsoperating at different speeds, the displacement is the volumedisplaced per revolution of the driving rotor. Displacementdepends only on the physical dimensions of the pumpingelements.3.1.4 dry operationa brief run during priming or strippingwith suction and d
19、ischarge lines unrestricted and pump cham-ber wet with liquid but pumping only air or vapor availablefrom the suction.3.1.5 effciency, mechanicalthe ratio of the pump poweroutput (hydraulic horsepower) to the pump power input (brakehorsepower) expressed in percent.3.1.6 effciency, volumetricthe rati
20、o of the pumps capac-ity to the product of the displacement and the speed expressedin percent.3.1.7 fuel, cleanfuel purified for direct use.3.1.8 fuel, dirtyfuel before purification which may con-tain water and some solids.3.1.9 net positive inlet pressure available (NPIPA)thetotal inlet pressure av
21、ailable from the system at the pump inletconnection at the rated flow, minus the vapor pressure of theliquid at the pumping temperature.3.1.10 net positive inlet pressure required (NPIPR)the netpressure above the liquid vapor pressure at rated flow andpumping temperature and at the pump inlet connec
22、tion re-quired to avoid performance impairment due to cavitation.3.1.11 pressure, crackingsometimes called set pressure,start-to-discharge pressure, or popping pressurethe pressureat which the relief valve just starts to open. This pressurecannot be determined readily if the relief valve is internal
23、 to thepump and it bypasses the liquid within the pump.3.1.12 pressure, differentialthe difference between dis-charge pressure and inlet pressure.3.1.13 pressure, dischargethe pressure at the outlet of thepump. Discharge pressure is sometimes called outlet pressure.3.1.14 pressure, inletthe total pr
24、essure at the inlet of thepump. Inlet pressure is sometimes called suction pressure.3.1.15 pressure, maximum allowable workingthe maxi-mum continuous pressure for which the manufacturer hasdesigned the equipment (or any part to which the term isreferred) when handling the specified fluid at the spec
25、ifiedtemperature. This pressure should not be greater than23 of thehydrostatic test pressure of the pressure containing parts.3.1.16 rated conditiondefined by discharge pressure, inletpressure, capacity, and viscosity.3.1.17 rotary pumpa positive displacement pump consist-ing of a casing containing
26、gears, screws, lobes, cams, vanes,shoes, or similar elements actuated by relative rotation betweenthe drive shaft and the casing. There are no inlet and outletvalves. These pumps are characterized by their close runningclearances.3.1.18 slipthe quantity of fluid that leaks through theinternal cleara
27、nces of a rotary pump per unit of time. Slipdepends on the internal clearances, the differential pressure, thecharacteristics of the fluid handled and in some cases, thespeed.3.1.19 speed, maximum allowable (in revolutions perminute)the highest speed at which the manufacturers designwill permit cont
28、inuous operation.3.1.20 speed, minimum allowable (in revolutions perminute)the lowest speed at which the manufacturers designwill permit continuous operation.3.1.21 speed, ratedthe number of revolutions per minuteof the driving rotor required to meet the rated conditions.3.1.22 suction lifta term us
29、ed to define a pumps capabil-ity to induce a partial vacuum at the pump inlet.3.1.23 temperature, maximum allowablethe maximumcontinuous temperature for which the manufacturer has de-signed the equipment (or any part to which the term is referred)when handling the specified fluid at the specified pr
30、essure.4. Classification4.1 Pumps will be classified as follows:4.1.1 Types:4.1.1.1 Type IIScrews with timing gears.4.1.1.2 Type IIIScrews without timing gears.4.1.1.3 Type IVImpellers with timing gears.4.1.1.4 Type VExternal gear (spur, helical, herringbone,lobe).4.1.1.5 Type VIIIInternal gear, int
31、ernal rotary lobe.4.1.1.6 Type XVane (sliding).4.1.1.7 Type XISliding shoe.4.1.2 Classes:4.1.2.1 Class AAqueous film forming foam, AFFF.4.1.2.2 Class BBromine.6Available from American Bearing Manufacturers Association (ABMA), 2025M Street, NW Suite 800, Washington, DC 20036, http:/www.abma-dc.org/.7
32、Available from American Gear Manufacturers Association (AGMA), 500Montgomery St., Suite 350, Alexandria, VA 22314-1581, http:/www.agma.org.8Available from American Petroleum Institute (API), 1220 L. St., NW, Wash-ington, DC 20005-4070, http:/api-ec.api.org.9Available from the Superintendent of Docum
33、ents, U.S. Government PrintingOffice, Washington, DC 20402.F 1510 0724.1.2.3 Class CDClean distillate fuel, viscosity 32 to 100SSU (2 to 21 centistokes) (for example, jet fuel, JP-5, fuel).4.1.2.4 Class CHClean heavy fuel, viscosity 100 to 1500SSU (21 to 325 centistokes) (propulsion fuel).4.1.2.5 Cl
34、ass DDDirty distillate fuel, viscosity 32 to 100SSU (2 to 21 centistokes) (for example, transfer, stripping,purifier feed, leak-off).4.1.2.6 Class DHDirty heavy oil, viscosity 32 to 4000SSU (2 to 863 centistokes) (for example, waste oil, transfer,stripping, purifier feed, drains).4.1.2.7 Class GGaso
35、line, aviation gasoline, gasohol.4.1.2.8 Class LMLube oil, viscosity 130 to 4000 SSU (27to 863 centistokes) (for example, propulsion, SSTG, control,L.O. service).4.1.2.9 Class LAAuxiliary L.O. 130 to 4000 SSU (27 to863 centistokes) service and L.O. transfer.4.1.2.10 Class MMiscellaneous.4.1.2.11 Cla
36、ss WHeavily contaminated seawater, viscos-ity 32 to 4000 SSU (2 to 863 centistokes) (bilge stripping, oilywaste transfer).5. Ordering Data5.1 The ordering activity shall provide manufacturers withall of the following information:5.1.1 Title, number, and date of specification,5.1.2 Type and classific
37、ation, see Section 4,5.1.3 Capacity in gallons per minute or litres per minute atrated discharge pressure,5.1.4 Discharge pressure in pound-force per square inchgauge (psig) or kilopascal (kPa) gauge.5.1.5 Airborne noise levels (if different than 7.5),5.1.6 Viscosity (only if different than Section
38、4),5.1.7 Mounting configuration (vertical, horizontal),5.1.8 Driver type (motor, turbine, engine, attached),5.1.9 Driver characteristics or specifications, or both,5.1.10 Relief valve cracking pressure and full-flow bypasspressure,5.1.11 Packaging and boxing requirements (immediate use,domestic; sto
39、rage, domestic; overseas),5.1.12 Quantity of pumps,5.1.13 Quantity of drawings,5.1.14 Quantity of technical manuals,5.1.15 Quantity of test reports,5.1.16 Performance test, if required,5.1.17 Certified data required, and5.1.18 Instruction plates and locations, if required.6. Materials6.1 Pump compon
40、ent parts shall be constructed of thematerials shown in Table 1.6.2 Materials other than shown in Table 1 are consideredexceptions and are subject to approval by the purchaser beforeusage.7. General Requirements7.1 Pumps shall be designed for a 20-year service life.7.2 Pumps shall be capable of sust
41、ained operation duringinclinations up to 45 in any direction.7.3 The pumps shall be capable of withstanding environ-mental vibration induced by shipboard machinery and equip-ment in the frequency range from 4 to 25 Hz.7.4 The internally excited vibration levels of the pump shallnot exceed 0.003-in.
42、(0.00762-mm) displacement peak to peakduring rated operation when readings are measured on thepump case near the coupling perpendicular to the pump shaft.7.5 At normal operating conditions, the airborne noise levelof the pump shall not exceed 85 dBA.7.6 The pump driver (electric motor, air motor, tu
43、rbine,hydraulic motor, diesel engine, attached) shall be as specifiedin the ordering data. The driver shall be sized for maximumflow at the relief valve full-flow bypass pressure, at maximumviscosity. If a two-speed motor is specified for high-viscosityClass LM applications, the motor size shall be
44、based on powerrequired at low speed, which is used during cold startup.7.7 If a reduction gear is required between the driver and thepump, it shall be provided by the pump manufacturer. Reduc-tion gears shall meet the requirements ofAGMA390.03. Gearsshall beAGMAClass 7 or better, pinions shall beAGM
45、AClass8 or better, and bearings shall be designed for a L10 life of15 000 h.7.8 Horizontal pumps may be mounted on a commonhorizontal bedplate with the driving unit or mounted directly tothe driver. Vertical pumps may be mounted with a bracket tothe driving unit or mounted directly to the driver.7.9
46、 All pump units shall incorporate guards over couplings,belts, and other external rotating parts.7.10 The mounting arrangement shall be sufficiently rigid toassure alignment is maintained between the pump and thedriver in accordance with the conditions in 7.2, 7.3, and 8.1.7.11 Seating surfaces of m
47、ounting bedplates, bracketmounting plates, or other mounting arrangements shall bemachined.7.12 Mounting bedplates, brackets, and plates shall beprovided with holes of sufficient size and quantity to assureadequate attachment to shipboard foundation or mountingstructure.7.13 Vertical units with face
48、 mounted motors shall bearranged so there are four (4) possible orientations of motordriver to pump. Other drivers are to be oriented in accordancewith the ordering information.7.14 Vertical units that are motor driven shall be assembledwith the conduit box mounted over the pump inlet flange,unless
49、otherwise specified.7.15 Couplings between the pump and the driver shall bekeyed to both shafts.7.16 Alignment between the pump and the driver shall notexceed 0.005-in. (0.13-mm) offset and 0.0005-in./in. (0.01-mm/mm) angularity.7.17 An external (separate) relief valve shall not be pro-vided with the pump unless otherwise specified. The purchasershall provide the cracking pressure and the fullflow bypasspressure of the system relief valve to the pump manufacturer.7.18 Direction of rotation shall be indicated by an arrowcast