ASTM F2245-2013 Standard Specification for Design and Performance of a Light Sport Airplane《轻型运动飞机的设计和性能标准规范》.pdf

上传人:cleanass300 文档编号:538184 上传时间:2018-12-07 格式:PDF 页数:30 大小:476.52KB
下载 相关 举报
ASTM F2245-2013 Standard Specification for Design and Performance of a Light Sport Airplane《轻型运动飞机的设计和性能标准规范》.pdf_第1页
第1页 / 共30页
ASTM F2245-2013 Standard Specification for Design and Performance of a Light Sport Airplane《轻型运动飞机的设计和性能标准规范》.pdf_第2页
第2页 / 共30页
ASTM F2245-2013 Standard Specification for Design and Performance of a Light Sport Airplane《轻型运动飞机的设计和性能标准规范》.pdf_第3页
第3页 / 共30页
ASTM F2245-2013 Standard Specification for Design and Performance of a Light Sport Airplane《轻型运动飞机的设计和性能标准规范》.pdf_第4页
第4页 / 共30页
ASTM F2245-2013 Standard Specification for Design and Performance of a Light Sport Airplane《轻型运动飞机的设计和性能标准规范》.pdf_第5页
第5页 / 共30页
亲,该文档总共30页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、Designation: F2245 13Standard Specification forDesign and Performance of a Light Sport Airplane1This standard is issued under the fixed designation F2245; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revision. A

2、 number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This specification covers airworthiness requirements forthe design of powered fixed wing light sport aircraft, an“airplane.”1.2 This s

3、pecification is applicable to the design of a lightsport aircraft/airplane as defined by regulations and limited toVFR flight.1.3 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish ap

4、pro-priate safety and health practices and determine the applica-bility of regulatory requirements prior to use.2. Referenced Documents2.1 ASTM Standards:2F2316 Specification for Airframe Emergency ParachutesF2339 Practice for Design and Manufacture of Reciprocat-ing Spark Ignition Engines for Light

5、 Sport AircraftF2506 Specification for Design andTesting of Fixed-Pitch orGround Adjustable Light Sport Aircraft PropellersF2538 Practice for Design and Manufacture of Reciprocat-ing Compression Ignition Engines for Light SportAircraftF2564 Specification for Design and Performance of a LightSport Gl

6、iderF2746 Specification for Pilots Operating Handbook (POH)for Light Sport Airplane2.2 Federal Aviation Regulations:314 CFR Part 33 Airworthiness Standards: Aircraft Engines14 CFR Part 35 Airworthiness Standards: Propellers2.3 EASA Requirements:4CS-22 Sailplanes and Powered SailplanesCS-E EnginesCS-

7、P Propellers2.4 Other Standards:GAMA Specification No. 1 Specification for Pilots Operat-ing Handbook53. Terminology3.1 Definitions:3.1.1 flapsany movable high lift device.3.1.2 maximum empty weight, WE(N)largest emptyweight of the airplane, including all operational equipment thatis installed in th

8、e airplane: weight of the airframe, powerplant,required equipment, optional and specific equipment, fixedballast, full engine coolant and oil, hydraulic fluid, and theunusable fuel. Hence, the maximum empty weight equalsmaximum takeoff weight minus minimum useful load: WE= W WU.3.1.3 minimum useful

9、load, WU(N)where WU= W WE.3.1.4 nighthours between the end of evening civil twilightand the beginning of morning civil twilight.3.1.4.1 DiscussionCivil twilight ends in the evening whenthe center of the suns disc is 6 below the horizon, and beginsin the morning when the center of the suns disc is 6

10、below thehorizon.3.2 Abbreviations:3.2.1 ARaspect ratio 5b2S3.2.2 bwing span (m)3.2.3 cchord (m)3.2.4 CAScalibrated air speed (m/s, kts)3.2.5 CLlift coefficient of the airplane3.2.6 CDdrag coefficient of the airplane1This specification is under the jurisdiction of ASTM Committee F37 on LightSport Ai

11、rcraft and is the direct responsibility of Subcommittee F37.20 on Airplane.Current edition approved March 1, 2013. Published April 2013. Originallyapproved in 2004. Last previous edition approved in 2012 as F2245 12d. DOI:10.1520/F2245-13.2For referenced ASTM standards, visit the ASTM website, www.a

12、stm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3Available from Federal Aviation Administration (FAA), 800 IndependenceAve., SW, Washington, DC 20591, http:/www.faa.gov o

13、r http:/ecfr.gpoaccess.gov.4Available from EASA European Aviation Safety Agency, Postfach 10 12 53,D-50452 Koeln, Germany, http:/easa.europa.eu.5Available from the General Aviation Manufacturers Association, http:/www.gama.aero/.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West

14、Conshohocken, PA 19428-2959. United States13.2.7 CGcenter of gravity3.2.8 Cmmoment coefficient (Cmis with respect to c/4point, positive nose up)3.2.9 CMOzero lift moment coefficient3.2.10 Cnnormal coefficient3.2.11 gacceleration as a result of gravity = 9.81 m/s23.2.12 IASindicated air speed (m/s, k

15、ts)3.2.13 ICAOInternational Civil Aviation Organization3.2.14 LSALight Sport Aircraft3.2.15 MACmean aerodynamic chord (m)3.2.16 nload factor3.2.17 n1airplane positive maneuvering limit load factor3.2.18 n2airplane negative maneuvering limit load factor3.2.19 n3load factor on wheels3.2.20 Ppower, (kW

16、)3.2.21 air density (kg/m3) = 1.225 at sea level standardconditions3.2.22 POHPilot Operating Handbook3.2.23 qdynamic pressure N/m2!512V23.2.24 RCclimb rate (m/s)3.2.25 Swing area (m2)3.2.26 Vairspeed (m/s, kts)3.2.27 VAdesign maneuvering speed3.2.28 VCdesign cruising speed3.2.29 VDdesign diving spee

17、d3.2.30 VDFdemonstrated flight diving speed3.2.31 VFdesign flap speed3.2.32 VFEmaximum flap extended speed3.2.33 VHmaximum speed in level flight with maximumcontinuous power (corrected for sea level standard conditions)3.2.34 VNEnever exceed speed3.2.35 VOoperating maneuvering speed3.2.36 VSstalling

18、 speed or minimum steady flight speed atwhich the airplane is controllable (flaps retracted)3.2.37 VS1stalling speed or minimum steady flight speedat which the aircraft is controllable in a specific configuration3.2.38 VS0stalling speed or minimum steady flight speedat which the aircraft is controll

19、able in the landing configuration3.2.39 VSPmaximum spoiler/speed brake extended speed3.2.40 VRground gust speed3.2.41 VXspeed for best angle of climb3.2.42 VYspeed for best rate of climb3.2.43 waverage design surface load (N/m2)3.2.44 Wmaximum takeoff or maximum design weight(N)3.2.45 WEmaximum empt

20、y airplane weight (N)3.2.46 WUminimum useful load (N)3.2.47 WZWFmaximum zero wing fuel weight (N)4. Flight4.1 Proof of Compliance:4.1.1 Each of the following requirements shall be met at themost critical weight and CG configuration. Unless otherwisespecified, the speed range from stall to VDFor the

21、maximumallowable speed for the configuration being investigated shallbe considered.4.1.1.1 VDFmay be less than or equal to VD.4.1.1.2 VNEmust be less than or equal to 0.9VDFand greaterthan or equal to 1.1VC. In addition, VNEmust be greater than orequal to VH.4.1.2 The following tolerances are accept

22、able during flighttesting:Weight +5 %, 10 %Weight, when critical +5 %, 1 %CG 7 % of total travel4.2 Load Distribution Limits:4.2.1 The minimum useful load, WU, shall be equal to orgreater than the sum of:4.2.1.1 An occupant weight of 845 N (190 lb) for eachoccupant seat in aircraft, plus4.2.1.2 The

23、weight of consumable substances, such as fuel,as required for a 1-h flight at Vh. Consumption rates must bebased on test results for the specific application.4.2.2 The minimum flying weight shall be determined.4.2.3 Empty CG, most forward, and most rearward CG shallbe determined.4.2.4 Fixed or remov

24、able ballast, or both, may be used ifproperly installed and placarded.4.3 Propeller Speed and Pitch LimitsPropeller configura-tion shall not allow the engine to exceed safe operating limitsestablished by the engine manufacturer under normal condi-tions.4.3.1 Maximum RPM shall not be exceeded with fu

25、llthrottle during takeoff, climb, or flight at 0.9VH, and 110 %maximum continuous RPM shall not be exceeded during aglide at VNEwith throttle closed.4.4 Performance, GeneralAll performance requirementsapply in standard ICAO atmosphere in still air conditions andat sea level. Speeds shall be given in

26、 indicated (IAS) andcalibrated (CAS) airspeeds.4.4.1 Stalling SpeedsWing level stalling speeds VSOandVSshall be determined by flight test at a rate of speed decreaseof 1 kts/s or less, throttle closed, with maximum takeoffweight, and most unfavorable CG.4.4.2 TakeoffWith the airplane at maximum take

27、offweight, full throttle, the following shall be measured usingnormal takeoff procedures:NOTE 1The procedure used for normal takeoff, including flapposition, shall be specified within the POH.4.4.2.1 Ground roll distance to takeoff on a runway withminimal grade.4.4.2.2 Distance to clear a 15-m (50-f

28、t) obstacle at a climbspeed of at least 1.3VS1.F2245 1324.4.3 ClimbAt maximum takeoff weight, flaps in theposition specified for climb within the POH, and full throttle:4.4.3.1 Rate of climb at VYshall exceed 95 m/min (312fpm).4.4.3.2 Climb gradient at VXshall exceed112 .4.4.4 LandingFor landing wit

29、h throttle closed and flapsextended, the following shall be determined:4.4.4.1 Landing distance from 15 m (50 ft) above groundwhen speed at 15 m (50 ft) is 1.3VSO.4.4.4.2 Ground roll distance with reasonable braking if soequipped.4.4.5 Balked LandingThe airplane shall demonstrate afull-throttle clim

30、b gradient at 1.3 VSOwhich shall exceed130within5sofpower application from aborted landing. If theflaps may be promptly and safely retracted without loss ofaltitude and without sudden changes in attitude, they may beretracted.4.5 Controllability and Maneuverability:4.5.1 General:4.5.1.1 The airplane

31、 shall be safely controllable and maneu-verable during takeoff, climb, level flight (cruise), dive to VDFor the maximum allowable speed for the configuration beinginvestigated, approach, and landing (power off and on, flapsretracted and extended) through the normal use of primarycontrols.4.5.1.2 Smo

32、oth transition between all flight conditions shallbe possible without exceeding pilot force as shown in Table 1.4.5.1.3 Full control shall be maintained when retracting andextending flaps within their normal operating speed range (VSOto VFE).4.5.1.4 Lateral, directional, and longitudinal control sha

33、ll bepossible down to VSO.4.5.2 Longitudinal Control:4.5.2.1 With the airplane trimmed as closely as possible forsteady flight at 1.3VS1, it must be possible at any speed between1.1VS1and 1.3VS1to pitch the nose downward so that a speednot less than 1.3VS1can be reached promptly. This must beshown w

34、ith the airplane in all possible configurations, withsimultaneous application of full power and nose down pitchcontrol, and with power at idle.4.5.2.2 Longitudinal control forces shall increase with in-creasing load factor.4.5.2.3 The control force to achieve the positive limitmaneuvering load facto

35、r (n1) shall not be less than 70 N in theclean configuration at the aft center of gravity limit. Thecontrol force increase is to be measured in flight from an initialn=1 trimmed flight condition at a minimum airspeed of twotimes the calibrated maximum flaps up stall speed.4.5.2.4 If flight tests are

36、 unable to demonstrate a maneuver-ing load factor of n1, then the minimum control force shall beproportional to the maximum demonstrated load factor, n1D,asfollows:fmin$70NSn1D2 1n12 1D4.5.3 Directional and Lateral Control:4.5.3.1 It must be possible to reverse a steady 30 bankedcoordinated turn thr

37、ough an angle of 60, from both directions:(1) within 5 s from initiation of roll reversal, with the airplanetrimmed as closely as possible to 1.3 VS1, flaps in the takeoffposition, and maximum takeoff power; and (2) within 4 s frominitiation of roll reversal, with the airplane trimmed as closelyas p

38、ossible to 1.3 VSO, flaps fully extended, and engine at idle.4.5.3.2 With and without flaps deployed, rapid entry into, orrecovery from, a maximum cross-controlled slip shall notresult in uncontrollable flight characteristics.4.5.3.3 Lateral and directional control forces shall not re-verse with inc

39、reased deflection.4.5.4 Static Longitudinal Stability:4.5.4.1 The airplane shall demonstrate the ability to trim forsteady flight at speeds appropriate to the climb, cruise, andlanding approach configurations; at minimum and maximumweight; and forward and aft CG limits.4.5.4.2 The airplane shall exh

40、ibit positive longitudinal sta-bility characteristics at any speed above 1.1 VS1,uptothemaximum allowable speed for the configuration beinginvestigated, and at the most critical power setting and CGcombination.4.5.4.3 Stability shall be shown by a tendency for theairplane to return toward trimmed st

41、eady flight after: (1)a“push” from trimmed flight that results in a speed increase,followed by a non-abrupt release of the pitch control; and (2)a “pull” from trimmed flight that results in a speed decrease,followed by a non-abrupt release of the pitch control.4.5.4.4 The airplane shall demonstrate

42、compliance with thissection while in trimmed steady flight for each flap and powersetting appropriate to the following configurations: (1) climb(flaps set as appropriate and maximum continuous power); (2)cruise (flaps retracted and 75 % maximum continuous power);and (3) approach to landing (flaps fu

43、lly extended and engine atidle).4.5.4.5 While returning toward trimmed steady flight, theairplane shall: (1) not decelerate below stalling speed VS1;(2)not exceed VNEor the maximum allowable speed for theconfiguration being investigated; and (3) exhibit decreasingamplitude for any long-period oscill

44、ations.4.5.5 Static Directional and Lateral Stability:4.5.5.1 The airplane must maintain a trimmed conditionaround the roll and yaw axis with respective controls fixed.4.5.5.2 The airplane shall exhibit positive directional andlateral stability characteristics at any speed above 1.2 VS1,uptothe maxi

45、mum allowable speed for the configuration beinginvestigated, and at the most critical power setting and CGcombination.4.5.5.3 Directional stability shall be shown by a tendencyfor the airplane to recover from a skid condition after release ofthe yaw control.TABLE 1 Pilot ForcePilot force as applied

46、to the controlsPitch,N (lb)Roll,N (lb)Yaw,N (lb)For temporary application (less than 2 min):Stick 200 (45) 100 (22.5) Wheel (applied to rim) 200 (45) 100 (22.5) Rudder pedal 400 (90)For prolonged application: 23 (5.2) 23 (5.2) 110 (24.7)F2245 1334.5.5.4 Lateral stability shall be shown by a tendency

47、 for theairplane to return toward a level-wing attitude after release ofthe roll control from a slip condition.4.5.5.5 The airplane shall demonstrate compliance with thissection while in trimmed steady flight for each flap and powersetting appropriate to the following configurations: (1) climb(flaps

48、 as appropriate and maximum continuous power); (2)cruise (flaps retracted and 75 % maximum continuous power);and (3) approach to landing (flaps fully extended and engine atidle).4.5.6 Dynamic StabilityAny oscillations shall exhibit de-creasing amplitude within the appropriate speed range (1.1 VS1to

49、maximum allowable speed specified in the POH, both asappropriate to the configuration).4.5.7 Wings Level StallIt shall be possible to prevent morethan 20 of roll or yaw by normal use of the controls during thestall and the recovery at all weight and CG combinations.4.5.8 Turning Flight and Accelerated Turning Stalls:4.5.8.1 With the airplane initially trimmed for 1.5 VS,turning flight and accelerated turning stalls shall be performedin both directions as follows: While maintaining a 30 coord

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 标准规范 > 国际标准 > ASTM

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1