BS ISO IEC 10967-3-2007 Information technology - Language independent arithmetric - Complex integer and floating point arithmetic and complex elementary numerical functions《信息技术 语言.pdf

上传人:赵齐羽 文档编号:588240 上传时间:2018-12-15 格式:PDF 页数:160 大小:1.59MB
下载 相关 举报
BS ISO IEC 10967-3-2007 Information technology - Language independent arithmetric - Complex integer and floating point arithmetic and complex elementary numerical functions《信息技术 语言.pdf_第1页
第1页 / 共160页
BS ISO IEC 10967-3-2007 Information technology - Language independent arithmetric - Complex integer and floating point arithmetic and complex elementary numerical functions《信息技术 语言.pdf_第2页
第2页 / 共160页
BS ISO IEC 10967-3-2007 Information technology - Language independent arithmetric - Complex integer and floating point arithmetic and complex elementary numerical functions《信息技术 语言.pdf_第3页
第3页 / 共160页
BS ISO IEC 10967-3-2007 Information technology - Language independent arithmetric - Complex integer and floating point arithmetic and complex elementary numerical functions《信息技术 语言.pdf_第4页
第4页 / 共160页
BS ISO IEC 10967-3-2007 Information technology - Language independent arithmetric - Complex integer and floating point arithmetic and complex elementary numerical functions《信息技术 语言.pdf_第5页
第5页 / 共160页
亲,该文档总共160页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、BRITISH STANDARD BS ISO/IEC 10967-3:2006 Incorporating corrigendum no. 1 Information technology Language independent arithmetic Part 3: Complex integer and floating point arithmetic and complex elementary numerical functions ICS 35.060 BS ISO/IEC 10967-3:2006 This British Standard was published unde

2、r the authority of the Standards Policy and Strategy Committee on 31 May 2007 BSI 2007 ISBN 978 0 580 60212 2 National foreword This British Standard is the UK implementation of ISO/IEC 10967-3:2006. The UK participation in its preparation was entrusted to Technical Committee IST/5, Programming lang

3、uages, their environments and system software interfaces. A list of organizations represented on this committee can be obtained on request to its secretary. NOTE An editorial error has been identified in note 1 of clause 2 of the ISO/IEC text of this standard. The Annex referred to does not exist in

4、 this standard. ISO/IEC technical committee JTC1/SC22 has been informed of this error by BSI. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. Compliance with a British Standard cannot confer immunity from leg

5、al obligations. Amendments issued since publication Amd. No. Date Comments 17397 Corrigendum No. 1 28 September 2007 Correction to ISBN Reference number ISO/IEC 10967-3:2006(E)INTERNATIONAL STANDARD ISO/IEC 10967-3 First edition 2006-05-01 Information technology Language independent arithmetic Part

6、3: Complex integer and floating point arithmetic and complex elementary numerical functions Technologies de linformation Arithmtique indpendante des langages Partie 3: Arithmtique des nombres complexes entiers et en virgule flottante et fonctions numriques lmentaires complexes BS ISO/IEC 10967-3:200

7、6ii BS ISO/IEC 10967-3:2006 iiiContents Foreword vii Introduction viii 1 Scope 1 1.1 Inclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Exclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Conformity 3 3 Norm

8、ative references 4 4 Symbols and denitions 4 4.1 Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4.1.1 Sets and intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4.1.2 Operators and relations . . . . . . . . . . . . . . . . .

9、. . . . . . . . . . . . 4 4.1.3 Mathematical functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4.1.4 Exceptional values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4.1.5 Datatypes and special values . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4.1.6

10、 Complex value constructors and complex datatype constructors . . . . . . . 8 4.2 Denitions of terms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 5 Specications for imaginary and complex datatypes and operations 14 5.1 Imaginary and complex integer datatypes and operation

11、s . . . . . . . . . . . . . . 14 5.1.1 The complex integer result helper function . . . . . . . . . . . . . . . . . . 15 5.1.2 Imaginary and complex integer operations . . . . . . . . . . . . . . . . . . . 15 5.1.2.1 Complex integer comparisons . . . . . . . . . . . . . . . . . . . . . 15 5.1.2.2 Mu

12、ltiplication by the imaginary unit. . . . . . . . . . . . . . . . . 17 5.1.2.3 The real and imaginary parts of a complex value . . . . . . . . . . 17 5.1.2.4 Formation of a complex integer from two real valued integers . . . 18 5.1.2.5 Basic complex integer arithmetic . . . . . . . . . . . . . . . .

13、 . . . 18 5.1.2.6 Absolute value and signum of integers and imaginary integers. . . 21 5.1.2.7 Divisibility interrogation . . . . . . . . . . . . . . . . . . . . . . . 21 5.1.2.8 Integerdivisionandremainderextendedtoimaginaryandcomplex integers . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14、 . . . . . 22 5.1.2.9 Maximum and minimum . . . . . . . . . . . . . . . . . . . . . . . 27 5.2 Imaginary and complex oating point datatypes and operations . . . . . . . . . . . 28 5.2.1 Maximum error requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.2.2 Sign requirements . . . .

15、. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.2.3 Monotonicity requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.2.4 The complex oating point result helper functions . . . . . . . . . . . . . . 30 5.2.5 Basic arithmetic for complex oating point . . . . . . . . .

16、. . . . . . . . . 31 5.2.5.1 Complex oating point comparisons . . . . . . . . . . . . . . . . . 31 5.2.5.2 Multiplication by the imaginary unit. . . . . . . . . . . . . . . . . 33 5.2.5.3 The real and imaginary parts of a complex value . . . . . . . . . . 34 5.2.5.4 Formation of a complex oating poi

17、nt from two oating point values 34 5.2.5.5 Fundamental complex oating point arithmetic . . . . . . . . . . . 34BS ISO/IEC 10967-3:2006 iv 5.2.5.6 Absolute value, phase and signum of complex oating point values 38 5.2.5.7 Floor, round, and ceiling . . . . . . . . . . . . . . . . . . . . . . . 39 5.2.

18、5.8 Maximum and minimum . . . . . . . . . . . . . . . . . . . . . . . 39 5.2.6 Complex sign, multiplication, and division . . . . . . . . . . . . . . . . . . . 40 5.2.6.1 Complex signum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.2.6.2 Complex multiplication . . . . . . . . . . . .

19、. . . . . . . . . . . . 41 5.2.6.3 Complex division. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.2.7 Operations for conversion from polar to Cartesian . . . . . . . . . . . . . . 43 5.3 Elementary transcendental imaginary and complex oating point operations . . . . 44 5.3.1 Operations

20、 for exponentiations and logarithms . . . . . . . . . . . . . . . . 44 5.3.1.1 Exponentiation of imaginary base to integer power . . . . . . . . . 44 5.3.1.2 Natural exponentiation . . . . . . . . . . . . . . . . . . . . . . . . 45 5.3.1.3 Complex exponentiation of argument base . . . . . . . . . .

21、. . . 45 5.3.1.4 Complex square root . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.3.1.5 Natural logarithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.3.2 Operations for radian trigonometric elementary functions . . . . . . . . . . 49 5.3.2.1 Radian angle normalisation . . .

22、. . . . . . . . . . . . . . . . . . . 49 5.3.2.2 Radian sine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.3.2.3 Radian cosine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.3.2.4 Radian tangent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.3.2.5

23、Radian cotangent . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.3.2.6 Radian secant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.3.2.7 Radian cosecant . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.3.2.8 Radian arc sine . . . . . . . . . . . . . . . . . .

24、. . . . . . . . . . 53 5.3.2.9 Radian arc cosine . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.3.2.10 Radian arc tangent . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.3.2.11 Radian arc cotangent . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.3.2.12 Radian arc secant .

25、 . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.3.2.13 Radian arc cosecant . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.3.3 Operations for hyperbolic elementary functions . . . . . . . . . . . . . . . . 60 5.3.3.1 Hyperbolic normalisation . . . . . . . . . . . . . . . . . . . .

26、 . . . 61 5.3.3.2 Hyperbolic sine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.3.3.3 Hyperbolic cosine . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.3.3.4 Hyperbolic tangent . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.3.3.5 Hyperbolic cotangent . . . . . .

27、. . . . . . . . . . . . . . . . . . . 62 5.3.3.6 Hyperbolic secant . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.3.3.7 Hyperbolic cosecant . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.3.3.8 Inverse hyperbolic sine . . . . . . . . . . . . . . . . . . . . . . . . 62 5.3.3.9 In

28、verse hyperbolic cosine . . . . . . . . . . . . . . . . . . . . . . . 63 5.3.3.10 Inverse hyperbolic tangent . . . . . . . . . . . . . . . . . . . . . . 63 5.3.3.11 Inverse hyperbolic cotangent . . . . . . . . . . . . . . . . . . . . . 64 5.3.3.12 Inverse hyperbolic secant . . . . . . . . . . . . .

29、. . . . . . . . . . 64 5.3.3.13 Inverse hyperbolic cosecant . . . . . . . . . . . . . . . . . . . . . . 65 5.4 Operations for conversion between imaginary and complex numeric datatypes . . . 65 5.4.1 Integer to complex integer conversions . . . . . . . . . . . . . . . . . . . . . 65 5.4.2 Floating p

30、oint to complex oating point conversions . . . . . . . . . . . . . 66 5.5 Support for imaginary and complex numerals . . . . . . . . . . . . . . . . . . . . . 67v6 Notication 68 6.1 Continuation values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 7 Relationship with langu

31、age standards 68 8 Documentation requirements 69 Annex A (normative) Partial conformity 71 A.1 Maximum error relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 A.2 Extra accuracy requirements relaxation . . . . . . . . . . . . . . . . . . . . . . . . 71 A.3 Relationships t

32、o other operations relaxation . . . . . . . . . . . . . . . . . . . . . . 72 A.4 Part 1 and part 2 requirements relaxation . . . . . . . . . . . . . . . . . . . . . . . 72 Annex B (informative) Rationale 73 B.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

33、 . 73 B.1.1 Inclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 B.1.2 Exclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 B.2 Conformity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 B.3 Norm

34、ative references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 B.4 Symbols and denitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 B.4.1 Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 B.4.1.1 Sets and inter

35、vals . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 B.4.1.2 Operators and relations . . . . . . . . . . . . . . . . . . . . . . . . 74 B.4.1.3 Mathematical functions . . . . . . . . . . . . . . . . . . . . . . . . 74 B.4.1.4 Exceptional values . . . . . . . . . . . . . . . . . . . . . . .

36、. . . . 75 B.4.1.5 Datatypes and special values . . . . . . . . . . . . . . . . . . . . . 75 B.4.1.6 Complex value constructors and complex datatype constructors . 75 B.4.2 Denitions of terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 B.5 Specications for the imaginary and comp

37、lex datatypes and operations . . . . . . . 76 B.5.1 Imaginary and complex integer datatypes and operations . . . . . . . . . . 76 B.5.2 Imaginary and complex oating point datatypes and operations . . . . . . . 76 B.5.2.1 Maximum error requirements . . . . . . . . . . . . . . . . . . . . . 76 B.5.2.2

38、 Sign requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 B.5.2.3 Maximum error requirements . . . . . . . . . . . . . . . . . . . . . 76 B.5.2.4 Basic arithmetic for complex oating point . . . . . . . . . . . . . 77 B.5.3 Elementary transcendental imaginary and complex oating poin

39、t operations 78 B.5.3.1 Operations for exponentiations and logarithms . . . . . . . . . . . 78 B.5.3.2 Operations for radian trigonometric elementary functions . . . . . 78 B.5.3.2.1 Radian angle normalisation . . . . . . . . . . . . . . . . . 78 B.5.3.2.2 Radian sine . . . . . . . . . . . . . . . .

40、 . . . . . . . . . . 79 B.5.3.2.3 Radian cosine . . . . . . . . . . . . . . . . . . . . . . . . 79 B.5.3.2.4 Radian tangent. . . . . . . . . . . . . . . . . . . . . . . . 79 B.5.3.2.5 Radian cotangent . . . . . . . . . . . . . . . . . . . . . . 80 B.5.3.2.6 Radian secant . . . . . . . . . . . . . .

41、. . . . . . . . . . 80 B.5.3.2.7 Radian cosecant . . . . . . . . . . . . . . . . . . . . . . . 80 B.5.3.2.8 Radian arc sine . . . . . . . . . . . . . . . . . . . . . . . 80 B.5.3.2.9 Radian arc cosine . . . . . . . . . . . . . . . . . . . . . . 81 B.5.3.2.10 Radian arc tangent . . . . . . . . . . .

42、. . . . . . . . . . 81 B.5.3.2.11 Radian arc cotangent . . . . . . . . . . . . . . . . . . . . 81 BS ISO/IEC 10967-3:2006vi B.5.3.2.12 Radian arc secant . . . . . . . . . . . . . . . . . . . . . . 81 B.5.3.2.13 Radian arc cosecant . . . . . . . . . . . . . . . . . . . . . 81 B.5.3.3 Operations for h

43、yperbolic elementary functions . . . . . . . . . . . 82 B.5.3.3.1 Hyperbolic normalisation . . . . . . . . . . . . . . . . . . 82 B.5.3.3.2 Hyperbolic sine . . . . . . . . . . . . . . . . . . . . . . . 82 B.5.3.3.3 Hyperbolic cosine . . . . . . . . . . . . . . . . . . . . . . 82 B.5.3.3.4 Hyperbolic

44、 tangent . . . . . . . . . . . . . . . . . . . . . 82 B.5.3.3.5 Hyperbolic cotangent . . . . . . . . . . . . . . . . . . . . 83 B.5.3.3.6 Hyperbolic secant . . . . . . . . . . . . . . . . . . . . . . 83 B.5.3.3.7 Hyperbolic cosecant . . . . . . . . . . . . . . . . . . . . . 83 B.5.3.3.8 Inverse hype

45、rbolic sine . . . . . . . . . . . . . . . . . . . 83 B.5.3.3.9 Inverse hyperbolic cosine . . . . . . . . . . . . . . . . . . 83 B.5.3.3.10 Inverse hyperbolic tangent . . . . . . . . . . . . . . . . . 84 B.5.3.3.11 Inverse hyperbolic cotangent . . . . . . . . . . . . . . . . 84 B.5.3.3.12 Inverse hyp

46、erbolic secant . . . . . . . . . . . . . . . . . . 84 B.5.3.3.13 Inverse hyperbolic cosecant . . . . . . . . . . . . . . . . . 84 B.5.4 Operations for conversion between imaginary and complex numeric datatypes 84 B.5.5 Support for imaginary and complex numerals . . . . . . . . . . . . . . . . . 84 B

47、.6 Notication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 B.6.1 Continuation values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 B.7 Relationship with language standards . . . . . . . . . . . . . . . . . . . . . . . . . 84 B.8 Documentation

48、requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Annex C (informative) Example bindings for specic languages 85 C.1 Ada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 C.2 C . . . . . . . . . . . . . . . . . . . . . . . . . . . .

49、. . . . . . . . . . . . . . . . . . 96 C.3 C+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 C.4 Fortran . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 C.5 Common Lisp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Annex D (informative) Bibliography 133 Annex E (informative) Cross reference 135 Annex F (informative) Possible changes to part 2

展开阅读全文
相关资源
  • BS ISO IEC 29150-2011 Information technology Security techniques Signcryption《信息技术 安全技术 签密》.pdfBS ISO IEC 29150-2011 Information technology Security techniques Signcryption《信息技术 安全技术 签密》.pdf
  • BS ISO IEC 15408-1-2009 Information technology - Security techniques - Evaluation criteria for IT Security - Introduction and general model《信息技术 安全技术 IT安全评价准则 一.pdfBS ISO IEC 15408-1-2009 Information technology - Security techniques - Evaluation criteria for IT Security - Introduction and general model《信息技术 安全技术 IT安全评价准则 一.pdf
  • BS ISO 7295-1988+A1-2014 Tyre valves for aircraft Interchangeability dimensions《飞机轮胎汽门嘴 互换性尺寸》.pdfBS ISO 7295-1988+A1-2014 Tyre valves for aircraft Interchangeability dimensions《飞机轮胎汽门嘴 互换性尺寸》.pdf
  • BS ISO 15118-1-2013 Road vehicles Vehicle to grid communication interface General information and use-case definition《道路车辆 车辆到电力通讯接口 通用信息和使用案例定义》.pdfBS ISO 15118-1-2013 Road vehicles Vehicle to grid communication interface General information and use-case definition《道路车辆 车辆到电力通讯接口 通用信息和使用案例定义》.pdf
  • BS ISO 13765-2-2004 Refractory mortars - Determination of consistency using the reciprocating flow table method《耐熔灰浆 使用往复流动表法测定一致性》.pdfBS ISO 13765-2-2004 Refractory mortars - Determination of consistency using the reciprocating flow table method《耐熔灰浆 使用往复流动表法测定一致性》.pdf
  • BS ISO 10998-2008+A1-2014 Agricultural tractors Requirements for steering《农业拖拉机 操纵要求》.pdfBS ISO 10998-2008+A1-2014 Agricultural tractors Requirements for steering《农业拖拉机 操纵要求》.pdf
  • BS Z 9-1998 Space data and information transfer systems - Advanced orbiting systems - Networks and data links - Architectural specification《空间数据和信息传输系统 高级轨道系统 网络和数据链接 结构规范》.pdfBS Z 9-1998 Space data and information transfer systems - Advanced orbiting systems - Networks and data links - Architectural specification《空间数据和信息传输系统 高级轨道系统 网络和数据链接 结构规范》.pdf
  • BS Z 7-1998 Space data and information transfer systems - ASCII encoded English《空间数据和信息传输系统 ASCII 编码英语》.pdfBS Z 7-1998 Space data and information transfer systems - ASCII encoded English《空间数据和信息传输系统 ASCII 编码英语》.pdf
  • BS Z 5-1997 Space data and information transfer systems - Standard formatted data units - Control authority procedures《航天数据和信息发送系统 标准格式数据单元 控制授权程序》.pdfBS Z 5-1997 Space data and information transfer systems - Standard formatted data units - Control authority procedures《航天数据和信息发送系统 标准格式数据单元 控制授权程序》.pdf
  • BS Z 4-1997 Space data and information transfer systems - Standard formatted data units - Structure and construction rules《航天数据和信息传输系统 标准格式数据单元 结构和构造规则》.pdfBS Z 4-1997 Space data and information transfer systems - Standard formatted data units - Structure and construction rules《航天数据和信息传输系统 标准格式数据单元 结构和构造规则》.pdf
  • 猜你喜欢
  • ASTM D7235-2014 red 0911 Standard Guide for Establishing a Linear Correlation Relationship Between Analyzer and Primary Test Method Results Using Relevant ASTM Standard Practices《用.pdf ASTM D7235-2014 red 0911 Standard Guide for Establishing a Linear Correlation Relationship Between Analyzer and Primary Test Method Results Using Relevant ASTM Standard Practices《用.pdf
  • ASTM D7235-2016 red 7810 Standard Guide for Establishing a Linear Correlation Relationship Between Analyzer and Primary Test Method Results Using Relevant ASTM Standard Practices《利.pdf ASTM D7235-2016 red 7810 Standard Guide for Establishing a Linear Correlation Relationship Between Analyzer and Primary Test Method Results Using Relevant ASTM Standard Practices《利.pdf
  • ASTM D7236-2006 Standard Test Method for Flash Point by Small Scale Closed Cup Tester (Ramp Method)《用小型闭杯试验器队闪点的标准试验方法(斜坡法)》.pdf ASTM D7236-2006 Standard Test Method for Flash Point by Small Scale Closed Cup Tester (Ramp Method)《用小型闭杯试验器队闪点的标准试验方法(斜坡法)》.pdf
  • ASTM D7236-2007 459 Standard Test Method for Flash Point by Small Scale Closed Cup Tester (Ramp Method)《小型闭杯试验器对闪点的测定用标准试验方法(斜坡法)》.pdf ASTM D7236-2007 459 Standard Test Method for Flash Point by Small Scale Closed Cup Tester (Ramp Method)《小型闭杯试验器对闪点的测定用标准试验方法(斜坡法)》.pdf
  • ASTM D7236-2007(2013) 1875 Standard Test Method for Flash Point by Small Scale Closed Cup Tester (Ramp Method)《用小型闭杯试验器测定闪点的标准试验方法(斜坡法)》.pdf ASTM D7236-2007(2013) 1875 Standard Test Method for Flash Point by Small Scale Closed Cup Tester (Ramp Method)《用小型闭杯试验器测定闪点的标准试验方法(斜坡法)》.pdf
  • ASTM D7236-2016 0868 Standard Test Method for Flash Point by Small Scale Closed Cup Tester (Ramp Method)《用小型闭杯试验机 (斜坡法) 测定闪点的标准试验方法》.pdf ASTM D7236-2016 0868 Standard Test Method for Flash Point by Small Scale Closed Cup Tester (Ramp Method)《用小型闭杯试验机 (斜坡法) 测定闪点的标准试验方法》.pdf
  • ASTM D7236-2016a 6863 Standard Test Method for Flash Point by Small Scale Closed Cup Tester (Ramp Method)《用小型闭杯试验机(斜坡法)测定闪点的标准试验方法》.pdf ASTM D7236-2016a 6863 Standard Test Method for Flash Point by Small Scale Closed Cup Tester (Ramp Method)《用小型闭杯试验机(斜坡法)测定闪点的标准试验方法》.pdf
  • ASTM D7237-2006 Standard Test Method for Aquatic Free Cyanide with Flow Injection Analysis (FIA) Utilizing Gas Diffusion Separation and Amperometric Detection《利用气体扩散分离和安培检测法对水化游离氰化.pdf ASTM D7237-2006 Standard Test Method for Aquatic Free Cyanide with Flow Injection Analysis (FIA) Utilizing Gas Diffusion Separation and Amperometric Detection《利用气体扩散分离和安培检测法对水化游离氰化.pdf
  • ASTM D7237-2010 0000 Standard Test Method for Free Cyanide with Flow Injection Analysis (FIA) Utilizing Gas Diffusion Separation and Amperometric Detection《用气体扩散分离和电流计探测法对游离氰化物进行流量.pdf ASTM D7237-2010 0000 Standard Test Method for Free Cyanide with Flow Injection Analysis (FIA) Utilizing Gas Diffusion Separation and Amperometric Detection《用气体扩散分离和电流计探测法对游离氰化物进行流量.pdf
  • 相关搜索

    当前位置:首页 > 标准规范 > 国际标准 > BS

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1