SAE J 3069-2016 Adaptive Driving Beam.pdf

上传人:progressking105 文档编号:1027798 上传时间:2019-03-24 格式:PDF 页数:14 大小:232.38KB
下载 相关 举报
SAE J 3069-2016 Adaptive Driving Beam.pdf_第1页
第1页 / 共14页
SAE J 3069-2016 Adaptive Driving Beam.pdf_第2页
第2页 / 共14页
SAE J 3069-2016 Adaptive Driving Beam.pdf_第3页
第3页 / 共14页
SAE J 3069-2016 Adaptive Driving Beam.pdf_第4页
第4页 / 共14页
SAE J 3069-2016 Adaptive Driving Beam.pdf_第5页
第5页 / 共14页
点击查看更多>>
资源描述

1、 _ SAE Technical Standards Board Rules provide that: “This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising ther

2、efrom, is the sole responsibility of the user.” SAE reviews each technical report at least every five years at which time it may be revised, reaffirmed, stabilized, or cancelled. SAE invites your written comments and suggestions. Copyright 2016 SAE International All rights reserved. No part of this

3、publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE. TO PLACE A DOCUMENT ORDER: Tel: 877-606-7323 (inside USA and Canada) Tel: +1 724-776-49

4、70 (outside USA) Fax: 724-776-0790 Email: CustomerServicesae.org SAE WEB ADDRESS: http:/www.sae.org SAE values your input. To provide feedback on this Technical Report, please visit http:/www.sae.org/technical/standards/J3069_201606 SURFACE VEHICLE RECOMMENDED PRACTICE J3069 JUN2016 Issued 2016-06 A

5、daptive Driving Beam RATIONALE Recent advances in vehicle technologies have enabled active control of road illumination to the point that portions of a beam can be dimmed or removed based on inputs from the vehicle and/or its surroundings. This, coupled with advances in technologies used for lane de

6、parture warning, automatic high beam activation, and other functions has enabled the identification and location of other vehicle road users at night and to actively limit potentially glaring light to those vehicle road users. This technology, generally referred to as Adaptive Driving Beam (ADB), ca

7、n provide a driver with the benefits of forward illumination similar to that from a high beam without the glare that beam would cause for other motorists. This is because portions of the beam are adapted such that what would be high beam levels of glare towards another vehicle road user is dimmed to

8、 at or below levels that would be produced by low beam. While this document does not require ADB glare levels to be dimmed below low beam levels, it does allow that possibility. Although current low beams cause less glare than high beams, the residual glare that they produce can still impair the vis

9、ion of oncoming drivers. Because of this, ADB technology offers the possibility of better glare protection than current low beams. By means of both increased seeing light and reduced glare light, ADB has the potential to greatly enhance the vision of drivers using ADB equipped vehicles as well as th

10、e vision of drivers of vehicles with conventional headlighting systems. United Nations (UN) Regulations were updated to accommodate ADB under UN Regulation 48 because of the potential benefits of ADB. Numerous vehicles equipped with ADB are now available for sale in regions governed by UN Regulation

11、 48. However, in the United States it is unclear how ADB would be treated under the current Federal Motor Vehicle Safety Standard (FMVSS) 108. Understanding the potential safety benefits, the National Highway Transport Safety Administration (NHTSA) has indicated a willingness to update FMVSS 108 to

12、include ADB. NHTSA has indicated that an SAE Recommended Practice representing an industry consensus on the requirements for ADB is desired and that such a Recommended Practice would be considered when FMVSS 108 is updated. The industry desired an expeditious update to FMVSS to allow ADB since these

13、 systems are already offered by vehicle manufacturers in other countries and because they appear to offer substantial safety and visibility benefits to consumers. To this end, the SAE Regulatory Cooperation Task Force first decided an update to SAE J565 Semi-Automatic Beam Switching could facilitate

14、, adding the necessary provisions to allow ADB. Semi-automatic beam switching systems are currently allowed and referred to in FMVSS 108. These systems operate under the same principles as ADB. Since 2004, more than 6 million vehicles have been sold with camera based semi-automatic beam switching sy

15、stems with few complaints or issues. The revision of SAE J565 was initially thought to be the most expeditious way to allow ADB within the current FMVSS 108 regulation; however, this direction was not pursued because there were no vehicle based performance requirements contained in SAE J565. The tas

16、k force was advised objective vehicle based performance requirements would be needed for NHTSA to consider allowing ADB. SAE INTERNATIONAL J3069 JUN2016 Page 2 of 14 Therefore, it was decided to create a new SAE Recommended Practice, SAE J3069 Adaptive Driving Beam. The requirements and rationale co

17、ntained in SAE J565 were considered in the development of SAE J3069. To expedite the completion of SAE J3069, the SAE Task Force decided to base its ADB requirements on existing requirements for low beam headlamps rather than creating new beam patterns and requirements which would not only delay add

18、ing the improvements of ADB to the national fleet, but were deemed non critical in accomplishing our objective. Any vehicle based requirements were drawn from NHTSAs report NHTSA- 2011-0145 “Feasibility of New Approaches for the Regulation of Motor Vehicle Lighting Performance”. To the extent possib

19、le, the task force also attempted to harmonize J3069 with current UN regulations. The test protocol and requirements were derived from information contained in NHTSA-2011-0145, UN Regulation No. 48 ADB requirements, FMVSS 108 requirements, University of Michigan Transportation Research Institute (UM

20、TRI) reports and testing and Rensselaer Polytechnic Institute (RPI) testing. The requirements of SAE J3069 are intended to ensure that glare values from ADB lamps are at or below the glare values from the low beam lamps mounted on the same vehicle. Since glare levels from low beams are already defin

21、ed, agreed upon, and a part of SAE J1383 and FMVSS 108, the goal of this document was not to exceed these values with an ADB equipped vehicle. However, as stated earlier, this document also allows lower glare values than allowed for low beams. The original intent of the Task Force was to create a re

22、commended practice that would only involve test track requirements applied to an equipped ADB vehicle. However because the glare requirements are based on the low beam, laboratory testing within the “dimmed” area of the ADB pattern was deemed essential to confirm compliance of each lamp to the low b

23、eam pattern glare values and maintain low beam minimums outside of the “dimmed” area. Including a lamp laboratory test also had the benefit of providing lamp manufacturers with photometric requirements to use in their process control, similar to the current requirements for low and high beam lamps.

24、A laboratory test also provides a more controlled environment in which to evaluate an ADB than a road test. Within the “dimmed” area, only maximum intensity requirements were included in order to allow lower intensities near the horizon. This enables lower glare intensities than the low beam. If low

25、 beam minimums were required inside the “dimmed” area, the glare intensities with ADB would not be lower than the low beam. In the future, if whole vehicle testing, defined in NHTSA20110145, for a low and high beam are incorporated into SAE and/or FMVSS, the need for laboratory photometric requireme

26、nts may be reconsidered for removal. During the development of SAE J3069, a key premise was that an ADB is a supplemental road illumination system, similar to front fog lamps, which can be easily deactivated by the driver. This is important because there are inevitably certain conditions and situati

27、ons under which ADB may not perform to drivers expectations. In these situations, the driver would need to be able to deactivate the system and either revert to low beam or activate their high beam. In that respect, ADBs functionality is similar to current semi-automatic beam switching systems. Havi

28、ng an indicator to alert the driver that ADB is enabled and that the system is emitting greater than low beam light levels was discussed at length. It was agreed that a lighted telltale indicating that ADB is enabled would be included. However, determining if there should be an indicator notifying t

29、he driver that the ADB is active, i.e. emitting light above low beam levels, was less straightforward. UN regulation requires that there be a telltale indicating that ADB is enabled and that the high beam telltale be activated when the system is active. Because UN regulation defines ADB as a mode of

30、 high beam, this is straightforward even though it appears that there have been different interpretations of when the high beam telltale is activated in practice. It was noted that both FMVSS 101 and FMVSS 108 require the high beam indicator to be activated in the case when the high beam is illumina

31、ted. The purpose of this telltale is to warn the driver that his/her vehicle may be glaring other drivers, unless high beams are switched off when such other drivers are present. However, ADB obviates the need to warn drivers that they may be glaring other drivers, and thus the telltale is arguably

32、not needed. Also, it did not seem appropriate to follow UN Regulation 48 in requiring that the high beam telltale be used to indicate ADB activation, since the ADB is herein defined as an addition to or equivalent to the low beam. The group also did not agree that an additional indicator should be r

33、equired to notify when ADB was active, i.e. emitting light above low beam levels, as this would place a substantial burden on the industry, create a new requirement above what is required under UN Regulations, and cause confusion for the driver all without providing any apparent benefit. It was ther

34、efore agreed that only a system enabled telltale, and not an additional ADB activated telltale would be required. The road test requirements were also discussed at length. UN Regulation 48 requires vehicles with an ADB to be driven on public roadways following a prescribed set of conditions to verif

35、y that ADB performs appropriately. For SAE J3069 to be accepted into the regulatory framework of the Motor Vehicle Safety Standards, repeatable road test conditions were developed and defined, repeatable measurement criteria were defined, pass / fail values were established, and a reasonable set of

36、tests were developed which adequately discriminate an acceptable ADB. SAE INTERNATIONAL J3069 JUN2016 Page 3 of 14 The pass/fail requirements were defined based on the whole vehicle testing methodology defined in NHTSA20110145. These provided definite absolute maximum light levels representing illum

37、inance levels on the opposing vehicle drivers eyes and preceding vehicle side view and rear view mirrors. These values are represented in Table 1. In addition, an allowance was included that if the glare values exceeded these lux levels, they would be acceptable if the levels didnt exceed 125% of th

38、e low beam levels measured from the ADB equipped vehicle under the same conditions. The rationale was to require a light level restriction that is no greater than the low beam on the vehicle being tested, while allowing slightly higher light levels than that vehicles low beam to accommodate test var

39、iation and small amounts of increased light due to beam pattern variations. It should be noted that the ADB light level comparison to the low beam is for the particular low beam for that vehicle, not to the regulatory maximum allowed light levels for the low beam. It is expected that low beam light

40、levels for any particular vehicle will be below the maximum allowed, such that the 125% allowance does not represent 125% of the maximum allowed glare. Test variation was seen during vehicle testing conducted by University of Michigan Transportation Research Institute (UMTRI) due to a slight dip in

41、their test track. This slight dip created a repeatable peak in the measured opposing eye illumination levels when the ADB vehicle passed over the dip. These values would not have complied with the values in the table, however they would have complied with the 125% allowance. On the other hand, if th

42、e ADB vehicle being tested had met all the requirements in Table 1, then the track tests with only the low beam activated would not be required which would reduce the testing burden. The track test would be conducted using a stationary fixture representing the preceding or opposing vehicle and the A

43、DB test vehicle would drive toward this fixture. It was decided that the fixture would be stationary to reduce test variability. This was considered worst case since some camera systems utilize opposing or preceding vehicles movement within a scene to identify them as vehicles instead of other road

44、objects, such as reflectors on the side of the road. The light towards the opposing and preceding vehicle driver/rider would be measured using lux meters positioned at the drivers eye point for an opposing vehicle and at the rear view and outside rear view (OSRV) mirror points for a preceding vehicl

45、e. The task force considered the driver/riders eyes the most critical area for glare prevention. However, the expectation is that ADB will reduce any glare producing light toward all locations on opposing and preceding vehicles, thereby also providing benefit to any passengers in the vehicle. The te

46、st fixture containing these meters would include representations of headlights or taillights indicative of a small vehicle and a motorcycle. The locations of the lux meters and lamp representations were taken from median location values provided by UMTRI. However, truck OSRV mirror horizontal locati

47、ons shown in Figure 3 were simplified to be in line with the car OSRV mirrors. This was deemed acceptable because the portions of an ADB that are dimmed or removed are based on the relative location of the headlamps to the drivers eyes and taillamps to the mirror locations. The horizontal width of t

48、he ADB dimmed area towards a preceding vehicle is proportional to the width of the taillamps illumination. If a trucks taillamps are spaced at a greater distance, the width of the dimmed area of the ADB would become wider. If truck OSRV mirrors were spaced further apart in Figure 3, a separate fixtu

49、re would have been required to accommodate the wider truck taillamp locations. The task force deemed this unnecessarily burdensome. In discussing the various road test conditions that should be included, it became clear that there are hundreds of potential test conditions, and specifically covering them all would make the testing requirements excessively burdensome. It would also result in excessive test-to-test variation

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 标准规范 > 国际标准 > 其他

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1