2019年高考数学二轮复习专题6统计与概率3.1统计与概率大题课件理.ppt

上传人:fuellot230 文档编号:1153454 上传时间:2019-05-11 格式:PPT 页数:45 大小:2.02MB
下载 相关 举报
2019年高考数学二轮复习专题6统计与概率3.1统计与概率大题课件理.ppt_第1页
第1页 / 共45页
2019年高考数学二轮复习专题6统计与概率3.1统计与概率大题课件理.ppt_第2页
第2页 / 共45页
2019年高考数学二轮复习专题6统计与概率3.1统计与概率大题课件理.ppt_第3页
第3页 / 共45页
2019年高考数学二轮复习专题6统计与概率3.1统计与概率大题课件理.ppt_第4页
第4页 / 共45页
2019年高考数学二轮复习专题6统计与概率3.1统计与概率大题课件理.ppt_第5页
第5页 / 共45页
点击查看更多>>
资源描述

1、6.3 统计与概率大题,-2-,-3-,-4-,-5-,-6-,-7-,-8-,2.独立性检验 对于取值分别是x1,x2和y1,y2的分类变量X和Y,其样本频数列联表是:,-9-,4.二项分布 一般地,在n次独立重复试验中,事件A发生的次数为X,设每次试验中事件A发生的概率为p,则P(X=k)= pkqn-k,其中0p1,p+q=1,k=0,1,2,n,称X服从参数为n,p的二项分布,记作XB(n,p),且E(X)=np,D(X)=np(1-p).,-10-,5.离散型随机变量的分布列、期望、方差 (1)设离散型随机变量X可能取的不同值为x1,x2,xi,xn,X取每一个值xi(i=1,2,n

2、)的概率P(X=xi)=pi,则称下表为离散型随机变量X的分布列.(2)E(X)=x1p1+x2p2+xipi+xnpn为X的均值或数学期望. (3)D(X)=(x1-E(X)2p1+(x2-E(X)2p2+(xi-E(X)2pi+(xn-E(X)2pn叫做随机变量X的方差. (4)均值与方差的性质:E(aX+b)=aE(X)+b;E(+)=E()+E();D(aX+b)=a2D(X).,6.3.1 统计与统计案例,-12-,考向一,考向二,考向三,样本的数字特征的应用 例1为迎接即将举行的集体跳绳比赛,高一年级对甲、乙两个代表队各进行了6轮测试,测试成绩(单位:次/分钟)如下表:(1)补全茎

3、叶图,并指出乙队测试成绩的中位数和众数;(2)试用统计学中的平均数、方差知识对甲、乙两个代表队的测试成绩进行分析.,考向四,-13-,考向一,考向二,考向三,考向四,-14-,考向一,考向二,考向三,解题心得(1)在预测总体数据的平均值时,常用样本数据的平均值估计,从而做出合理的判断. (2)平均数反映了数据取值的平均水平,标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大,越不稳定.,考向四,-15-,考向一,考向二,考向三,对点训练 1学校为了了解A,B两个班级学生在本学期前两个月内观看电视节目的时长,分别从这两个班级中随机抽取10名学生进行调查,得到他们

4、观看电视节目的时长(单位:小时)如下. A班:5,5,7,8,9,11,14,20,22,31;B班:3,9,11,12,21,25,26,30,31,35. 将上述数据作为样本. (1)绘制茎叶图,并从所绘制的茎叶图中提取样本数据信息(至少写出2条); (2)分别求样本中A,B两个班级学生的平均观看时长,并估计哪个班级的学生平均观看的时间较长; (3)从A班的样本数据中随机抽取一个不超过11的数据记为a,从B班的样本数据中随机抽取一个不超过11的数据记为b,求ab的概率.,考向四,-16-,考向一,考向二,考向三,考向四,解: (1)茎叶图如下(图中的茎表示十位数字,叶表示个位数字):从茎叶

5、图中可看出(答案不唯一): A班数据有 集中在茎0,1,2上,B班数据有 集中在茎1,2,3上; A班叶的分布是单峰的,B班叶的分布基本上是对称的; A班数据的中位数是10,B班数据的中位数是23.,-17-,考向一,考向二,考向三,考向四,(2)A班样本数据的平均值为(3)A班的样本数据中不超过11的数据a有6个,分别为5,5,7,8,9,11;B班的样本数据中不超过11的数据b有3个,分别为3,9,11. 从上述A班和B班的数据中各随机抽取一个,记为(a,b),分别为(5,3),(5,9),(5,11),(5,3),(5,9),(5,11),(7,3),(7,9),(7,11),(8,3)

6、,(8,9),(8,11),(9,3),(9,9),(9,11),(11,3),(11,9),(11,11),共18种, 其中ab的有(5,3),(5,3),(7,3),(8,3),(9,3),(11,3),(11,9),共7种. 故ab的概率为P= .,-18-,考向一,考向二,考向三,考向四,样本的相关系数的应用 例2为了监控某种零件的一条生产线的生产过程,检验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸:,-19-,考向一,考向二,考向三,考向四,(1)求(xi,i)(i=1,2,16)的相关系数r,并回答是否

7、可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若|r|0.25,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).,-20-,考向一,考向二,考向三,考向四,-21-,考向一,考向二,考向三,考向四,-22-,考向一,考向二,考向三,考向四,-23-,考向一,考向二,考向三,考向四,解题心得对于样本的相关系数的应用的题目,题目一般都给出样本(xi,yi)(i=1,2,n)的相关系数r的表达式,以及有关的数据,解决这类题的关键是在有关的数据中选择题目需要的数据代入公式即可.,-24-,考向一,考向二,考向三,考向四,对点训练 2下图是我国2008年至2014年生活垃

8、圾无害化处理量(单位:亿吨)的折线图.注:年份代码17分别对应年份20082014. (1)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明; (2)建立y关于t的回归方程(系数精确到0.01),预测2018年我国生活垃圾无害化处理量.,-25-,考向一,考向二,考向三,考向四,-26-,考向一,考向二,考向三,考向四,-27-,考向一,考向二,考向三,考向四,-28-,考向一,考向二,考向三,考向四,利用回归方程进行回归分析 例3(2018四川成都三模,理16)某企业统计自2011年到2017的产品研发费x和销售额y的数据如下表:,-29-,考向一,考向二,考向三,考向四

9、,根据上表中的数据作出散点图,得知产品研发费的自然对数值z(精确到小数点后第二位)和销售额y具有线性相关关系. (1)求销售额y关于产品研发费x的回归方程 的计算结果精确到小数点后第二位); (2)根据(1)的结果预测:若2018年的销售额要达到70万元,则产品研发费大约需要多少万元? 参考数据:ln 55.54.02,ln 60.34.10,ln 127.74.85.,-30-,考向一,考向二,考向三,考向四,-31-,考向一,考向二,考向三,考向四,解题心得在求两变量的回归方程时,由于 的公式比较复杂,求它的值计算量比较大,为了计算准确,可将这个量分成几个部分分别计算,最后再合成,这样等同

10、于分散难点,各个攻破,提高了计算的准确度.,-32-,考向一,考向二,考向三,考向四,-33-,考向一,考向二,考向三,考向四,(3)已知信州区、广丰区、上饶县、经开区四区中,其中有两个区的单车乱停乱放数量超过标准,在“大美上饶”活动中,检查组随机抽取两个区调查单车乱停乱放数量,X表示“单车乱停乱放数量超过标准的区的个数”,求X的分布列和数学期望.,-34-,考向一,考向二,考向三,考向四,-35-,考向一,考向二,考向三,考向四,-36-,考向一,考向二,考向三,考向四,统计图表与独立性检验的综合 例4(2018全国卷3,理18)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务

11、的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:,-37-,考向一,考向二,考向三,考向四,(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由; (2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m的工人数填入下面的列联表:(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?,-38-,考向一,考向二,考向三,考向四,解: (1)第二种生产方式的效率更高. 理由如下

12、: 由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高. 由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高. 由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟.因此第二种生产方式的效率更高.,-39-,考向一,考向二,考向三,考向四,由茎叶图可知:用

13、第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布.又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少.因此第二种生产方式的效率更高. 以上给出了4种理由,学生答出其中任意一种或其他合理理由均可得分.,-40-,考向一,考向二,考向三,考向四,-41-,考向一,考向二,考向三,考向四,解题心得有关独立性检验的问题解题步骤:(1)作出22列联表;(2)计算随机变量K2的值;(3)查

14、临界值,检验作答.,-42-,考向一,考向二,考向三,考向四,对点训练 4“共享单车”的出现,为我们提供了一种新型的交通方式.某机构为了调查人们对此种交通方式的满意度,从交通拥堵不严重的A城市和交通拥堵严重的B城市分别随机调查了20个用户,得到了一个用户满意度评分的样本,并绘制出如图茎叶图.(1)根据茎叶图,比较两城市满意度评分的平均值的大小及方差的大小(不要求计算出具体值,给出结论即可);,-43-,考向一,考向二,考向三,考向四,(2)若得分不低于80分,则认为该用户对此种交通方式“认可”,否则认为该用户对此种交通方式“不认可”,请根据此样本完成下面22列联表,并据此样本分析是否有95%的把握认为城市拥堵与认可共享单车有关;(3)若从此样本中的A城市和B城市各抽取1人,则在此2人中恰有1人认可的条件下,此人来自B城市的概率是多少?,-44-,考向一,考向二,考向三,考向四,-45-,考向一,考向二,考向三,考向四,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 教学课件 > 中学教育

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1