API MPMS 12 2 1-1995 Manual of Petroleum Measurement Standards Chapter 12-Calculation of Petroleum Quantities Section 2-Calculation of Petroleum Quantities Usin.pdf

上传人:刘芸 文档编号:1243081 上传时间:2019-08-27 格式:PDF 页数:34 大小:196.55KB
下载 相关 举报
API MPMS 12 2 1-1995 Manual of Petroleum Measurement Standards Chapter 12-Calculation of Petroleum Quantities Section 2-Calculation of Petroleum Quantities Usin.pdf_第1页
第1页 / 共34页
API MPMS 12 2 1-1995 Manual of Petroleum Measurement Standards Chapter 12-Calculation of Petroleum Quantities Section 2-Calculation of Petroleum Quantities Usin.pdf_第2页
第2页 / 共34页
API MPMS 12 2 1-1995 Manual of Petroleum Measurement Standards Chapter 12-Calculation of Petroleum Quantities Section 2-Calculation of Petroleum Quantities Usin.pdf_第3页
第3页 / 共34页
API MPMS 12 2 1-1995 Manual of Petroleum Measurement Standards Chapter 12-Calculation of Petroleum Quantities Section 2-Calculation of Petroleum Quantities Usin.pdf_第4页
第4页 / 共34页
API MPMS 12 2 1-1995 Manual of Petroleum Measurement Standards Chapter 12-Calculation of Petroleum Quantities Section 2-Calculation of Petroleum Quantities Usin.pdf_第5页
第5页 / 共34页
点击查看更多>>
资源描述

1、Manual of PetroleumMeasurement StandardsChapter 12Calculation of Petroleum QuantitiesSection 2Calculation of Petroleum Quantities Using Dynamic Measurement Methods and Volumetric Correction FactorsPart 1IntroductionSECOND EDITION, MAY 1995REAFFIRMED, MARCH 2014Manual of PetroleumMeasurement Standard

2、sChapter 12Calculation of Petroleum QuantitiesSection 2Calculation of Petroleum Quantities Using Dynamic Measurement Methods and Volumetric Correction FactorsPart 1IntroductionMeasurement CoordinationSECOND EDITION, MAY 1995REAFFIRMED, MARCH 2014SPECIAL NOTES1. API PUBLICATIONS NECESSARILY ADDRESS P

3、ROBLEMS OF A GENERALNATURE. WITH RESPECT TO PARTICULAR CIRCUMSTANCES, LOCAL, STATE,AND FEDERAL LAWS AND REGULATIONS SHOULD BE REVIEWED.2. API IS NOT UNDERTAKING TO MEET THE DUTIES OF EMPLOYERS, MANU-FACTURERS, OR SUPPLIERS TO WARN OR PROPERLY TRAIN AND EQUIPTHEIR EMPLOYEES AND OTHERS EXPOSED CONCERN

4、ING HEALTH ANDSAFETY RISKS AND PRECAUTIONS, NOR UNDERTAKING THEIR OBLIGATIONSUNDER LOCAL, STATE, OR FEDERAL LAWS.3. INFORMATION CONCERNING SAFETY AND HEALTH RISKS AND PROPERPRECAUTIONS WITH RESPECT TO PARTICULAR MATERIALS AND CONDI-TIONS SHOULD BE OBTAINED FROM THE EMPLOYER, THE MANUFACTUREROR SUPPL

5、IER OF THAT MATERIAL, OR THE MATERIAL SAFETY DATA SHEET.4. NOTHING CONTAINED IN ANY API PUBLICATION IS TO BE CONSTRUED ASGRANTING ANY RIGHT, BY IMPLICATION OR OTHERWISE, FOR THE MANU-FACTURE, SALE, OR USE OF ANY METHOD, APPARATUS, OR PRODUCTCOVERED BY LETTERS PATENT. NEITHER SHOULD ANYTHING CONTAINE

6、DIN THE PUBLICATION BE CONSTRUED AS INSURING ANYONE AGAINSTLIABILITY FOR INFRINGEMENT OF LETTERS PATENT.5. GENERALLY, API STANDARDS ARE REVIEWED AND REVISED, REAF-FIRMED, OR WITHDRAWN AT LEAST EVERY FIVE YEARS. SOMETIMES A ONE-TIME EXTENSION OF UP TO TWO YEARS WILL BE ADDED TO THIS REVIEWCYCLE. THIS

7、 PUBLICATION WILL NO LONGER BE IN EFFECT FIVE YEARSAFTER ITS PUBLICATION DATE AS AN OPERATIVE API STANDARD OR,WHERE AN EXTENSION HAS BEEN GRANTED, UPON REPUBLICATION.STATUS OF THE PUBLICATION CAN BE ASCERTAINED FROM THE APIAUTHORING DEPARTMENT TELEPHONE (202) 682-8000. A CATALOG OF APIPUBLICATIONS A

8、ND MATERIALS IS PUBLISHED ANNUALLY AND UPDATEDQUARTERLY BY API, 1220 L STREET, N.W., WASHINGTON, D.C. 2005.Copyright 1995 American Petroleum InstituteiiiFOREWORDThis five-part publication consolidates and presents standard calculations for meteringpetroleum liquids using turbine or displacement mete

9、rs. Units of measure in this publicationare in International System (SI) and United States Customary (USC) units consistent withNorth American industry practices.This standard has been developed through the cooperative efforts of many individualsfrom industry under the sponsorship of the American Pe

10、troleum Institute and the GasProcessors Association.API publications may be used by anyone desiring to do so. Every effort has been madeby the Institute to assure accuracy and reliability of the data contained herein; however, theInstitute makes no representation, warranty, or guarantee in connectio

11、n with this publicationand hereby disclaims any liability or responsibility for loss or damage resulting from its useor for the violation of any federal, state, or municipal regulation with which this publicationmay conflict.Suggested revisions to this publication are invited and should be submitted

12、 to theMeasurement Coordinator, Exploration and Production Department, American PetroleumInstitute, 1220 L Street, N.W., Washington, D.C. 20005.vCONTENTSPageSECTION 2CALCULATION OF PETROLEUM QUANTITIESUSING DYNAMIC MEASUREMENT METHODS AND VOLUMETRIC CORRECTION FACTORSPART 1INTRODUCTION1.1 Purpose 11

13、.2 Scope11.3 Organization of Standard. 11.3.1 Part 1Introduction . 11.3.2 Part 2Measurement Tickets. 11.3.3 Part 3Proving Reports . 11.3.4 Part 4Calculation of Base Prover Volumes by Waterdraw Method . 11.3.5 Part 5Calculation of Base Prover Volumes by Master Meter Method 21.4 Referenced Publication

14、s 21.5 Field of Application. 21.5.1 Applicable Liquids 21.5.2 Base Conditions 21.6 Uncertainty 31.6.1 General 31.6.2 Hierarchy of Accuracies 31.7 Precision, Rounding, and Discrimination Levels 31.7.1 Rounding of Numbers. 31.7.2 Discrimination Levels . 31.8 Definitions, Symbols, and Abbreviations 41.

15、8.1 Definitions. 41.8.2 Symbols and Abbreviations 51.9 Liquid Density . 71.10 Derivation of Liquid Base Volume Equations . 71.10.1 Determination of Indicated Volume 71.10.2 Determination of Gross Standard Volume 71.10.3 Determination of Net Standard Volume 81.10.4 Determination of S it is a fixed sy

16、stematic contribution to the uncer-tainty in any subsequent measurements.1.7 Precision, Rounding, andDiscrimination LevelsThe minimum precision of the computing hardware mustbe equal to or greater than a ten-digit calculator to obtain thesame answer in all calculations. For tickets calculated manu-a

17、lly in the field utilizing printed CTL and CPL tables and notrequiring the same precision, a less precise calculator (eightdigit) may be used if agreed to by all parties.The general rounding rules and discrimination levels aredescribed in the following subsections.1.7.1 ROUNDING OF NUMBERSWhen a num

18、ber is to be rounded to a specific number ofdecimals, it shall always be rounded off in one step to thenumber of figures that are to be recorded and shall not berounded in two or more steps of successive rounding. Therounding procedure shall be in accordance with the following:a. When the figure to

19、the right of the last place to be retainedis 5 or greater, the figure in the last place to be retainedshould be increased by 1.b. If the figure to the right of the last place to be retained is lessthan 5, the figure in the last place retained should beunchanged.1.7.2 DISCRIMINATION LEVELSFor field m

20、easurements of temperature and pressure, thelevels specified in the various tables are maximum discrim-ination levels. For example, if the parties agree to use a thermometergraduated in whole F increments, then the device isnormally read to levels of 0.5F resolution. Likewise, if theparties agree to

21、 use a “smart” temperature transmitter, whichcan indicate to 0.01F or 0.005C, then the reading shall berounded to the nearest 0.1F or 0.05C value prior torecording for calculation purposes.4CHAPTER 12CALCULATION OF PETROLEUM QUANTITIES1.8 Definitions, Symbols, andAbbreviationsThe definitions and sym

22、bols described below are a compi-lation of this five-part publication.1.8.1 DEFINITIONS1.8.1.1 barrel (bbl): a unit volume equal to 9,702.0cubic inches, or 42.0 U.S. gallons.1.8.1.2 base prover volume (BPV): the volume of theprover at base conditions as shown on the calibration certifi-cate and obta

23、ined by arithmetically averaging three consec-utive successful CPV determinations.1.8.1.3 calibrated prover volume (CPV): the volumeat base conditions between the detectors in a pipe prover orthe volume of a proving tank between specified “empty” and“full” levels. The calibrated volume of a bidirect

24、ional proveris the sum of the two volumes swept out between detectorsduring a roundtrip.1.8.1.4 composite meter factor (CMF): a meter factorcorrected from normal operating pressure to base pressure. ACMF may be used for meter applications where the relativedensity, temperature, and pressure are cons

25、idered constantduring the measurement ticket period.1.8.1.5 cubic meter (M3): a unit of volume equal to1,000,000.0 milliliters (ml), or 1,000.0 liters.1.8.1.6 gross standard volume (GSV): the volume atbase conditions corrected also for the meters performance(MF, MMF, or CMF).1.8.1.7 indicated standa

26、rd volume (ISV): the IVcorrected to base conditions. It does not contain any correc-tion for the meters performance (MF, MMF, or CMF).1.8.1.8 indicated volume (IV): the change in meterreading that occurs during a receipt or delivery. The wordregistration, though not preferred, often has the samemean

27、ing.1.8.1.9 liter (l): a unit of volume equal to 1,000.0milliliters (ml).1.8.1.10 master meter: a meter proved using a certifiedprover and then utilized to calibrate other provers or proveother meters.1.8.1.11 master meter factor (MMF): a dimensionlessterm obtained by dividing the gross standard vol

28、ume of theliquid passed through the master prover (during the provingof the master meter) by the indicated standard volume(ISVm) as registered by the master meter during proving.1.8.1.12 master prover: refers to a volumetric standard(conventional pipe prover, SVP, or open tank prover), whichwas cali

29、brated by the waterdraw method, and is used to cali-brate a master meter.1.8.1.13 measurement ticket: the generalized termused in this publication to embrace and supersede long-standing expressions such as “run ticket,” “meter ticket,” and“receipt and delivery ticket.” 1.8.1.14 meter factor (MF): a

30、dimensionless termobtained by dividing the volume of the liquid passed throughthe prover corrected to standard conditions during provingby the indicated standard volume (ISVm) as registered by themeter.1.8.1.15 meter reading (MRo, MRc, MMRo, MMRc):the instantaneous display on a meter head. When the

31、differ-ence between a closing and an opening reading is beingdiscussed, such a difference should be called an IV.1.8.1.16 net standard volume (NSV): the gross stan-dard volume corrected for nonmerchantable quantities suchas sediment and water (CSW).1.8.1.17 pass: a single movement of the displacer i

32、n aprover that activates the start-stop detectors.1.8.1.18 prover calibration certificate: a documentstating the BPV and other physical data required whenproving flowmeters (E, Gc, Ga, Gl). The calibration certificateis a written acknowledgment of a proper calibration of aprover between the authoriz

33、ed representatives of the interestedparties.1.8.1.19 proving report: an organized collection of allinformation (meter, prover, and other), used during meterproving, meter performance verification, and meter factordetermination.1.8.1.20 round trip: the forward (out) and reverse (back)consecutive pass

34、es in a bidirectional prover.1.8.1.21 run, meter proving: one or more consecutivepasses, the results of which, when totalized, are deemedsufficient to provide a single value of the meter factor (MF,CMF, MMF) or K-factor (KF, CKF).1.8.1.22 run, prover calibration: one or more consec-utive passes, the

35、 results of which, when totalized, aredeemed sufficient to provide a single value of the calibratedprover volume (CPV).1.8.1.23 U.S. gallon (gal): a unit volume equal to 231.0cubic inches. 1.8.1.24 weighted average pressure (PWA): theaverage liquid pressure at the meter for the ticket period. For vo

36、lumetric methods, the weighted average pressure isthe average of the pressure values sampled at uniform flowintervals and is representative of the entire measurementticket period. PWA = SUM1n(Pi)/nWhere:n = the number of uniform intervalsSECTION 2, PART 1INTRODUCTION 5For time-based methods, the wei

37、ghted average pressure isthe sum of the pressure values sampled during the timeinterval, multiplied by the volume or mass determinedduring the same time interval, and divided by the entirevolume measured.PWA = SUM (Pi Vi)/Vt1.8.1.25 weighted average temperature (TWA): theaverage liquid temperature a

38、t the meter for the ticket period. For volumetric based methods, the weighted averagetemperature is the average of the temperature values sampledat uniform flow intervals during the entire measurementticket period. TWA = SUM1n(Ti)/nWhere:n = the number of uniform intervalsFor time-based methods, the

39、 weighted average tempera-ture is the sum of the temperature values sampled during thetime interval, multiplied by the volume or mass determinedduring the same time interval, and divided by the entirevolume measured.TWA = SUM (Ti Vi)/Vt1.8.2 SYMBOLS AND ABBREVIATIONSWhile a combination of uppercase,

40、 lowercase, andsubscripted notation is used in this publication, the uppercasenotation may be used for computer programming and otherdocuments as deemed appropriate.Additional letters may be added to the symbolic notationsbelow for clarity and specificity. UnitsSI International system of units (pasc

41、al, cubicmeter, kilogram, metric system).USC U.S. customary units (inch, pound, cubicinch, traditional system).Pipe DimensionsID Inside diameter of prover pipe.OD Outside diameter of prover pipe.WT Wall thickness of prover pipe.Liquid DensityAPI Density of liquid in degrees API gravityunits.APIbBase

42、 liquid density in degrees API gravityunits.APIobsObserved liquid density at base pressure indegrees API gravity units.DEN Density of liquid in kilogram per cubicmeter (kg/M3) units.DENbBase liquid density in kilogram per cubicmeter (kg/M3) units.DENobsObserved liquid density at base pressure inkilo

43、gram per cubic meter (kg/M3) units.RD Density of liquid in relative density.RDbBase liquid density in relative density.RDobsObserved liquid density at base pressure inrelative density.RHO Density of liquid in mass per unit volume.RHObBase density.RHOobsObserved liquid density at base pressure.RHOpDe

44、nsity of liquid in prover (for prover cali-brations).RHOtmDensity of liquid in test measure (for provercalibrations).RHOtpDensity of liquid at operating temperatureand pressure.TemperatureC Celsius temperature scale.F Fahrenheit temperature scale.T Temperature.TbBase temperature in F or C.TdTemperat

45、ure of detector mounting shaft ordisplacer shaft on SVP with external detec-tors.TobsObserved temperature to determine RHOb(i.e., hydrometer temperature) in F or C.TmTemperature of meter in F or C.TtmTemperature of test measure in F or C.TmmTemperature of master meter in F or C.TpTemperature of prov

46、er in F or C.TmpTemperature of master prover in F or C.TWA Weighted average temperature of liquid formeasurement ticket calculations in F orC.PressurekPa Kilopascals (SI) pressure units.kPaaKilopascals in absolute pressure units.kPagKilopascals in gauge pressure units.psi Pounds per square inch (USC

47、) pressureunits.psia Pounds per square inch in absolute pressureunits.psig Pounds per square inch in gauge pressureunits.P Pressure.Pb Base pressure in psi or kPa pressure units.PbaBase pressure in absolute pressure units.PbgBase pressure in gauge pressure units.PmPressure of liquid in meter in gaug

48、e pressureunits.PmmPressure of liquid in master meter in gaugepressure units.PmpPressure of liquid in master prover in gaugepressure units.PpPressure of liquid in prover in gauge pres-sure units.6CHAPTER 12CALCULATION OF PETROLEUM QUANTITIESPWA Weighted average pressure of liquid formeasurement tick

49、et calculations in gaugepressure units.Pe Equilibrium vapor pressure of liquid atnormal operating conditions in absolutepressure units.PebEquilibrium vapor pressure of liquid at basetemperature in absolute pressure units.PemEquilibrium vapor pressure of liquid inmeter at proving conditions in absolute pres-sure units.PemmEquilibrium vapor pressure of liquid inmaster meter in absolute pressure units.PepEquilibrium vapor pressure of liquid inprover at proving conditions in absolutepressure units.Correction FactorsCCF Combined correction f

展开阅读全文
相关资源
  • API SALES OF NGL & LRG-2018 2016 Sales of Natural Gas Liquids and Liquefied Refinery Gas.pdfAPI SALES OF NGL & LRG-2018 2016 Sales of Natural Gas Liquids and Liquefied Refinery Gas.pdf
  • API MPMS 9 4-2018 Manual of Petroleum Measurement Standards Chapter 9 4-Continuous Density Measurement Under Dynamic (Flowing) Conditions (FIRST EDITION).pdfAPI MPMS 9 4-2018 Manual of Petroleum Measurement Standards Chapter 9 4-Continuous Density Measurement Under Dynamic (Flowing) Conditions (FIRST EDITION).pdf
  • API MPMS 9 3-2012 Manual of Petroleum Measurement Standards Chapter 9 3 Standard Test Method for Density Relative Density and API Gravity of Crude Petroleum and.pdfAPI MPMS 9 3-2012 Manual of Petroleum Measurement Standards Chapter 9 3 Standard Test Method for Density Relative Density and API Gravity of Crude Petroleum and.pdf
  • API MPMS 9 2-2012 Manual of Petroleum Measurement Standards Chapter 9 2 Standard Test Method for Density or Relative Density of Light Hydrocarbons by Pressure H.pdfAPI MPMS 9 2-2012 Manual of Petroleum Measurement Standards Chapter 9 2 Standard Test Method for Density or Relative Density of Light Hydrocarbons by Pressure H.pdf
  • API MPMS 9 1-2012 Manual of Petroleum Measurement Standards Chapter 9 1 Standard Test Method for Density Relative Density or API Gravity of Crude Petroleum and .pdfAPI MPMS 9 1-2012 Manual of Petroleum Measurement Standards Chapter 9 1 Standard Test Method for Density Relative Density or API Gravity of Crude Petroleum and .pdf
  • API MPMS 8 5-2015 Manual of Petroleum Measurement Standards Chapter 8 5 Standard Practice for Manual Piston Cylinder Sampling for Volatile Crude Oils Condensate.pdfAPI MPMS 8 5-2015 Manual of Petroleum Measurement Standards Chapter 8 5 Standard Practice for Manual Piston Cylinder Sampling for Volatile Crude Oils Condensate.pdf
  • API MPMS 8 5 SPANISH-2015 Manual of Petroleum Measurement Standards Chapter 8 5 - Standard Practice for Manual Piston Cylinder Sampling for Volatile Crude Oils .pdfAPI MPMS 8 5 SPANISH-2015 Manual of Petroleum Measurement Standards Chapter 8 5 - Standard Practice for Manual Piston Cylinder Sampling for Volatile Crude Oils .pdf
  • API MPMS 8 4-2017 Manual of Petroleum Measurement Standards Chapter 8 4 Standard Practice for Sampling and Handling of Fuels for Volatility Measurement (FOURTH .pdfAPI MPMS 8 4-2017 Manual of Petroleum Measurement Standards Chapter 8 4 Standard Practice for Sampling and Handling of Fuels for Volatility Measurement (FOURTH .pdf
  • API MPMS 8 4-2014 Manual of Petroleum Measurement Standards Chapter 8 4 Standard Practice for Sampling and Handling of Fuels for Volatility Measurement (THIRD E.pdfAPI MPMS 8 4-2014 Manual of Petroleum Measurement Standards Chapter 8 4 Standard Practice for Sampling and Handling of Fuels for Volatility Measurement (THIRD E.pdf
  • API MPMS 8 3-1995 Manual of Petroleum Measurement Standards Chapter 8 - Sampling Section 3 - Standard Practice for Mixing and Handling of Liquid Samples of Petr.pdfAPI MPMS 8 3-1995 Manual of Petroleum Measurement Standards Chapter 8 - Sampling Section 3 - Standard Practice for Mixing and Handling of Liquid Samples of Petr.pdf
  • 猜你喜欢
  • ASTM C1355 C1355M-1996(2006) Standard Specification for Glass Fiber Reinforced Gypsum Composites《玻璃纤维增强石膏成份的标准规范》.pdf ASTM C1355 C1355M-1996(2006) Standard Specification for Glass Fiber Reinforced Gypsum Composites《玻璃纤维增强石膏成份的标准规范》.pdf
  • ASTM C1355 C1355M-1996(2011) Standard Specification for Glass Fiber Reinforced Gypsum Composites 《玻璃纤维增强石膏复合材料的标准规格》.pdf ASTM C1355 C1355M-1996(2011) Standard Specification for Glass Fiber Reinforced Gypsum Composites 《玻璃纤维增强石膏复合材料的标准规格》.pdf
  • ASTM C1355 C1355M-1996(2015) Standard Specification for Glass Fiber Reinforced Gypsum Composites《玻璃纤维增强石膏基复合材料的标准规格》.pdf ASTM C1355 C1355M-1996(2015) Standard Specification for Glass Fiber Reinforced Gypsum Composites《玻璃纤维增强石膏基复合材料的标准规格》.pdf
  • ASTM C1356-2007 Standard Test Method for Quantitative Determination of Phases in Portland Cement Clinker by Microscopical Point-Count Procedure《用显微镜点计数程序对硅酸盐水泥溶渣状态的定量测定用标准试验方法》.pdf ASTM C1356-2007 Standard Test Method for Quantitative Determination of Phases in Portland Cement Clinker by Microscopical Point-Count Procedure《用显微镜点计数程序对硅酸盐水泥溶渣状态的定量测定用标准试验方法》.pdf
  • ASTM C1356-2007(2012) Standard Test Method for Quantitative Determination of Phases in Portland Cement Clinker by Microscopical Point-Count Procedure《用显微镜点计数程序对硅酸盐水泥熟料相态的定量测定用标准试验方.pdf ASTM C1356-2007(2012) Standard Test Method for Quantitative Determination of Phases in Portland Cement Clinker by Microscopical Point-Count Procedure《用显微镜点计数程序对硅酸盐水泥熟料相态的定量测定用标准试验方.pdf
  • ASTM C1357-2005 Standard Test Methods for Evaluating Masonry Bond Strength《评价砖石砌合强度的标准试验方法》.pdf ASTM C1357-2005 Standard Test Methods for Evaluating Masonry Bond Strength《评价砖石砌合强度的标准试验方法》.pdf
  • ASTM C1358-2005 Standard Test Method for Monotonic Compressive Strength Testing of Continuous Fiber-Reinforced Advanced Ceramics with Solid Rectangular Cross-Section Test Specimens.pdf ASTM C1358-2005 Standard Test Method for Monotonic Compressive Strength Testing of Continuous Fiber-Reinforced Advanced Ceramics with Solid Rectangular Cross-Section Test Specimens.pdf
  • ASTM C1358-2011 Standard Test Method for Monotonic Compressive Strength Testing of Continuous Fiber-Reinforced Advanced Ceramics with Solid Rectangular Cross-Section Test Specimens.pdf ASTM C1358-2011 Standard Test Method for Monotonic Compressive Strength Testing of Continuous Fiber-Reinforced Advanced Ceramics with Solid Rectangular Cross-Section Test Specimens.pdf
  • ASTM C1358-2013 Standard Test Method for Monotonic Compressive Strength Testing of Continuous Fiber-Reinforced Advanced Ceramics with Solid Rectangular Cross-Section Test Specimens.pdf ASTM C1358-2013 Standard Test Method for Monotonic Compressive Strength Testing of Continuous Fiber-Reinforced Advanced Ceramics with Solid Rectangular Cross-Section Test Specimens.pdf
  • 相关搜索

    当前位置:首页 > 标准规范 > 国际标准 > API

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1