1、行政职业能力测试分类模拟题 215 及答案解析(总分:100.00,做题时间:90 分钟)一、数量关系(总题数:0,分数:0.00)二、数学运算(总题数:43,分数:100.00)1.甲乙两个水池大小形状完全相同但排水孔口径不同,将两个水池内装满的水匀速排空分别需要 2 小时和3 小时。早晨 5 点半两个装满水的水池同时开始排水,到什么时候乙水池中剩余的水量正好是甲水池剩余水量的 2 倍?(分数:2.00)A.8 点B.6 点半C.7 点D.7 点半2.一批工人完成一项工程,工人的工作效率相同,如果增加 8 个工人,则 10 天能完成任务;如果增加 3个工人,那么 20 天才能完成,现在只能增
2、加 2 个工人,则需要多少天完成任务?(分数:2.00)A.23B.25C.28D.303.一条隧道,甲用 20 天时间可以挖完,乙用 10 天时间可以挖完,现在按照甲挖完一天,乙再接替一天,然后甲再接替乙挖一天如此循环,挖完整个隧道需要多少天?(分数:2.00)A.16B.15C.14D.134.打开 A、B、C 每一个阀门,水就以各自不变的速度注入水槽。当三个阀门都打开时,注满水槽需要 1 小时;只打开 A、C 两个阀门,需要 1.5 小时;只打开 B、C 两个阀门,需要 2 小时。若只打开 A、B 两个阀门时,需要多少小时注满水槽?(分数:2.00)A.1.1B.1.15C.1.2D.1
3、.255.有一个图书馆的图书需要登记,已知甲登记这些书需要 10 天,乙需要 15 天,如果双方每人一天轮流登记(甲先开始),则需要几天?(分数:2.00)A.11B.12C.13D.146.甲、乙、丙三人接到一份零件加工任务,甲、乙独立完成这批任务的时间为 20 天,丙为 40 天,现三人一同完成该任务,一共花费了 10 天时间,已知在这 10 天时间里,乙和丙一直没有休息,甲休息了一段时间,则甲休息了_天。(分数:2.00)A.2B.3C.4D.57.小王和小李一起录入信息,小王比小李晚一天开始工作,且两人同时结束,已知小王的速度是小李的 1.2倍,小李工作了 6 天。问小王一个人完成这项
4、工作,需要多少天?(分数:2.00)A.8B.10C.12D.148.一项工作甲和乙一起做需要 10 天,乙和丙一起做需要 12 天,甲和丙一起做需要 15 天,问甲单独完成这项工作需要多少天?(分数:2.00)A.24B.25C.28D.309.水池上装有甲、乙两个大小不同的水龙头,单开甲龙头 1 小时可注满水池,现在两个水龙头同时注水,20 分钟可注满水池的 (分数:2.00)A.60 分钟B.120 分钟C.125 分钟D.160 分钟10.某座桥由甲施工队单独做 25 天后,再由乙施工队单独做 60 天即可完成。如果甲、乙两组施工队合作,需 40 天完成,现在甲施工队先单独做 34 天
5、,然后再由乙施工队来单独完成,还需要做_天。(分数:2.00)A.50B.44C.46D.4811.某工程需要 A、B、C 三个工程队中至少两个队共同合作完成,经过对三个工程队的工作效率分析后得知,该工程最快需要 10 天,最慢需要 30 天完成。问该工程的完成时间可能为下列哪个?(分数:2.00)A.25 天B.19 天C.15 天D.12 天12.甲、乙、丙三队合修一条公路,五天后,甲修的是乙、丙总和的三分之一,乙修的是甲、丙总和的五分之一,已知甲比乙多修 4.8 千米,则丙队修了_。(分数:2.00)A.9.6 千米B.14.4 千米C.24 千米D.33.6 千米13.运送一批货物总运
6、费为 4200 元,A、B 两家运输公司同时运送 8 小时完成,A 公司单独运送需 14 小时完成。现由 A 公司单独运送若干小时后,再由 B 公司单独运送剩下的货物,这样共用 18 小时全部运完。那么 A、B 两公司应分别获得_。(分数:2.00)A.2100 元,2100 元B.600 元,3600 元C.1400 元,2800 元D.800 元,3400 元14.有一批零件,甲、乙两种车床都可以加工。如果甲车床单独加工,可以比乙车床单独加工提前 10 天完成任务。现在用甲、乙两车床一起加工,结果 12 天就完成了任务。如果只用甲车床单独加工需多少天完成任务?(分数:2.00)A.20 天
7、B.30C.40D.4515.A、B、C 共三个进水口,A 为主进水口,A 水流的速度是 B、C 水流速度之和的两倍,B 单独进水需要50 小时将容器装满;B、C 同时进水 10 小时后打开 A,还需 5 小时才能将容器装满,问若 A、C 同时进水需要几小时将容器装满?(分数:2.00)A.5B.5.5C.9D.1016.甲、乙、丙、丁四个工厂联合完成一批玩具的生产任务,如果四个工厂同时工作,需要 10 个工作日完成;如果交给甲、乙两个工厂,需要 24 个工作日完成;如果交给乙、丙两个工厂,所需时间比交给甲、丁两个工厂少用 15 个工作日。已知甲、乙两厂每天生产的件数差与丙、丁两厂每天生产的件
8、数差相同,问如果单独交给丁工厂,需要多少个工作日完成?(分数:2.50)A.30B.48C.60D.8017.加工一批零件,原计划每天加工 15 个,若干天可以完成。当完成加工任务的 (分数:2.50)A.1500B.2250C.1800D.270018.早上 7 点两组农民开始在麦田里收割麦子,其中甲组 20 人,乙组 15 人。8 点半,甲组分出 10 人捆麦子;10 点,甲组将本组所有已割的麦子捆好后,全部帮乙组捆麦子;如果乙组农民一直在割麦子,且假设每个农民的工作效率相同,则乙组捆好所有已割麦子的时间是_。(分数:2.50)A.10:45B.11:00C.11:15D.11:3019.
9、一批零件,如果第一天甲做,第二天乙做,这样交替轮流做,完成的天数恰好是整数。如果第一天乙做,第二天甲做,这样交替轮流做,做到上次轮流完成时所用的天数后,还剩 40 个不能完成,已知甲、乙工作效率的比是 7:3。问甲每天做多少个?(分数:2.50)A.30B.40C.70D.12020.A、B、C 三辆卡车一起运输 1 次,正好能运完一集装箱的某种货物。现三辆卡车一起执行该种货物共40 集装箱的运输任务,A 运 7 次、B 运 5 次、C 运 4 次,正好运完 5 集装箱的量。此时 C 车休息,而 A、B车各运了 21 次,又完成了 12 集装箱的量。问如果此后换为 A、C 两车同时运输,至少还
10、需要各运多少次才能运完剩余的该种货物?(分数:2.50)A.30B.32C.34D.3621.有 20 人修一条路,计划 15 天完成。动工 3 天后抽出 5 人植树,留下的人继续修路。如果每人工作的效率不变,那么修完这段公路实际用多少天?(分数:2.50)A.16B.17C.18D.1922.有甲、乙两项工程,张师傅单独完成甲工程需 6 天,单独完成乙工程需 30 天,李师傅单独完成甲工程需 18 天,单独完成乙工程需 24 天,若合作两项工程,最少需要的天数为_。(分数:2.50)A.16 天B.15 天C.12 天D.10 天23.一件工作甲先做 6 小时,乙接着做 12 小时可以完成。
11、甲先做 8 小时,乙接着做 6 小时也可以完成。如果甲先做 3 小时后,再由乙接着做,还需要多少小时完成?(分数:2.50)A.16B.18C.21D.2424.某施工队计划用 120 个劳动力在规定时间内完成一定的挖土任务,施工 25 天后。因调走 30 人,于是每人每天必须多挖 1 方土才能在规定时间内完成任务。问在 25 天后每人每天挖土多少方?(分数:2.50)A.3B.4C.5D.625.铺设一条自来水管道,甲队单独铺设 8 天可以完成,而乙队每天可铺设 50 米。如果甲、乙两队同时铺设,4 天可以完成全长的 (分数:2.50)A.1000B.1100C.1200D.130026.一
12、项工程由甲、乙、丙三个工程队共同完成需要 15 天,甲队与乙队的工作效率相同,丙队 3 天的工作量与乙队 4 天的工作量相当。三队同时开工 2 天后,丙队被调往另一工地,甲乙两队留下继续工作。那么,开工 22 天后,这项工程_。(分数:2.50)A.已经完工B.余下的量需甲乙两队共同工作 1 天C.余下的量需乙丙两队共同工作 1 天D.余下的量需甲乙丙三队共同工作 1 天27.某工程,由甲、乙两队承包, 天可以完成,需支付 1800 元;由乙、丙两队承包, 天可以完成,需支付 1500 元;由甲、丙两队承包, (分数:2.50)A甲B乙C丙D.甲和丙28.同时点燃两根相同长度的蜡烛,一根粗些,
13、可以点 5 小时,一根细些,可以点 4 小时,当把两根蜡烛同时吹灭时,粗蜡的长度正好是细蜡的 4 倍,吹灭时,蜡烛已点了_。(分数:2.50)A.1 小时 55 分B.2 小时 50 分C.4 小时 30 分D.3 小时 45 分29.一个水池有三个进水口和一个出水口,同时打开一个出水口和两个进水口,注满整个水池分别需要 6小时、5 小时和 4 小时;同时打开一个出水口和三个进水口,注满整个水池需要 3 小时。如果同时打开三个进水口不打开出水口,注满整个水池需要多久? A1 小时 B2 小时 C 小时 D (分数:2.50)A.B.C.D.30.有两个工程队完成一项工程,甲队每工作 6 天后休
14、息 1 天,单独做需要 76 天完工;乙队每工作 5 天后休息 2 天,单独做需要 89 天完工,照这样计算,两队合作,从 1998 年 11 月 29 日开始动工,到 1999 年几月几日才能完工?(分数:2.50)A.1 月 9 日B.1 月 10 日C.1 月 11 日D.1 月 8 日31.用甲、乙、丙三个排水管排水,甲管排出 1 立方米水的时间,乙管能排出 1.25 立方米的水,丙管能排出 1.5 立方米的水。现在要排完某个水池的水,先开甲管,2 小时后开乙管,几小时后再开丙管,到下午4 时正好把水排完,且各个排水管排出的水量正好相等。问什么时候打开的丙管?(分数:2.50)A.8
15、点B.9 点C.9 点 20 分D.9 点 40 分32.移栽果苗若干颗,如果小明、小王二人合栽,8 小时完成。先由小明栽了 3 小时后,又由小王栽了 1小时,还剩下总棵树的 (分数:2.50)A.112B.115C.148D.16033.甲的工作效率是乙和丙的效率之和,乙的工作效率是丙的 1.5 倍。现有一项工作,3 人合作 5 天后完成了全部工作的 (分数:2.50)A.13B.15C.16D.2634.地铁工程在某 1000 米路段地下施工,两头并进,一侧地铁盾构机施工,每天掘进 3 米,工作 5 天,休息一天进行检修;另一侧人工轮岗不休,每天掘进 1 米,多少天此段打通?(分数:2.5
16、0)A.286B.285C.282D.28835.甲乙丙三人共同完成一项工程,他们工作 5 天后完成工程的一半,接着丙退出,甲乙继续工作 3 天后又完成剩下工程的一半,然后乙也退出,甲独自工作 5 天后完成全部工程。若乙单独完成该工程,则需要的天数为_。(分数:2.50)A.20B.30C.40D.6036.有一项工程甲公司花 6 天,乙公司再花 9 天可以完成,或者甲公司花 8 天,乙公司再花 3 天可以完成,如果这项工程由甲或乙单独完成,则甲公司所需天数比乙公司少_天。(分数:2.50)A.15B.18C.24D.2737.某项工程若由甲、乙两队合作需 105 天完成,甲、丙两队合作需 6
17、0 天,丙、丁两队合作需 70 天,甲、丁两队合作需 84 天。问这四个工程队的工作效率由低到高的顺序是什么?(分数:2.50)A.乙、丁、甲、丙B.乙、甲、丙、丁C.丁、乙、丙、甲D.乙、丁、丙、甲38.A、B 两条流水线每小时均能装配 1 辆汽车。A 流水线每装配 3 辆汽车要用 1 小时维护,B 流水线每装配 4 辆汽车要用 1.5 小时维护。问两条流水线同时开始工作,装配 200 辆汽车需用多少个小时?(分数:2.50)A.134B.135C.136D.13739.王明抄写一份报告,如果每分钟抄写 30 个字,则用若干小时可以抄完。当抄完 (分数:2.50)A.6025B.7200C.
18、7250D.525040.某项工程计划 300 天完成,开工 100 天后,由于施工人员减少,工作效率下降 20%,问完成该工程比原计划推迟多少天?(分数:2.50)A.40B.50C.60D.7041.蓄水池有甲乙两条进水管和丙丁两条出水管。要注满一池水,单开甲管需 3 小时,单开乙管需 5 小时;要排完一池水,单开丙管需 4 小时,单开丁管需 6 小时。现在 7m,内有 (分数:2.50)A.19.25B.20.75C.21.5D.22.542.一件工作,甲每天做 8 小时,30 天能完成;乙每天做 10 小时,22 天就能完成。甲每做 6 天要休息一天,乙每做 5 天要休息一天,现两队合
19、做,每天都做 8 小时,做了 13 天(包括休息日在内)后,由甲单独做,每天做 6 小时,那么完成这项工作共用了多少天?(分数:2.50)A.21B.22C.23D.2443.A、B 两项工程分别由甲、乙两个队来完成。在晴天甲队完成 A 工程需要 12 天,乙队完成 B 工程需要15 天;在雨天甲队效率下降 40%,乙队效率下降 10%,现在两队同时开工,并且同时完成了任务,问施工期间有多少个雨天?(分数:2.50)A.8B.9C.10D.11行政职业能力测试分类模拟题 215 答案解析(总分:100.00,做题时间:90 分钟)一、数量关系(总题数:0,分数:0.00)二、数学运算(总题数:
20、43,分数:100.00)1.甲乙两个水池大小形状完全相同但排水孔口径不同,将两个水池内装满的水匀速排空分别需要 2 小时和3 小时。早晨 5 点半两个装满水的水池同时开始排水,到什么时候乙水池中剩余的水量正好是甲水池剩余水量的 2 倍?(分数:2.00)A.8 点B.6 点半C.7 点 D.7 点半解析:解析 设经过 x 小时后乙中剩余水量是甲中剩余水量的 2 倍,则2.一批工人完成一项工程,工人的工作效率相同,如果增加 8 个工人,则 10 天能完成任务;如果增加 3个工人,那么 20 天才能完成,现在只能增加 2 个工人,则需要多少天完成任务?(分数:2.00)A.23B.25 C.28
21、D.30解析:解析 特值法与方程法相结合。设每人每天的工作量为 1,原来有 x 个工人,则根据题干条件列方程(x+8)10=(x+3)20,解得 x=2。总工作量为(2+8)10=100,只增加 2 个工人,则需要 100(2+2)=25 天完成任务。3.一条隧道,甲用 20 天时间可以挖完,乙用 10 天时间可以挖完,现在按照甲挖完一天,乙再接替一天,然后甲再接替乙挖一天如此循环,挖完整个隧道需要多少天?(分数:2.00)A.16B.15C.14 D.13解析:解析 甲一天可挖全部的 ,乙一天可挖全部的 ,因此甲、乙两人 2 天共挖 。这样经过 6 个 2 天,即 12 天,共完成全部的 。
22、还剩下 没有完成,需要甲挖一天 ,然后乙再挖半天4.打开 A、B、C 每一个阀门,水就以各自不变的速度注入水槽。当三个阀门都打开时,注满水槽需要 1 小时;只打开 A、C 两个阀门,需要 1.5 小时;只打开 B、C 两个阀门,需要 2 小时。若只打开 A、B 两个阀门时,需要多少小时注满水槽?(分数:2.00)A.1.1B.1.15C.1.2 D.1.25解析:解析 A、C 两个阀门 1 个小时可注满 ,B,C 两个阀门 1 个小时可注满 ,则单独开 C阀门 1 个小时可注满 ,只打开 A、B 两个阀门 1 个小时可注满 ,共需5.有一个图书馆的图书需要登记,已知甲登记这些书需要 10 天,
23、乙需要 15 天,如果双方每人一天轮流登记(甲先开始),则需要几天?(分数:2.00)A.11B.12 C.13D.14解析:解析 甲乙两天登记图书的6.甲、乙、丙三人接到一份零件加工任务,甲、乙独立完成这批任务的时间为 20 天,丙为 40 天,现三人一同完成该任务,一共花费了 10 天时间,已知在这 10 天时间里,乙和丙一直没有休息,甲休息了一段时间,则甲休息了_天。(分数:2.00)A.2B.3C.4D.5 解析:解析 由题意可设甲乙效率均为 2,丙效率为 1,工作总量为 40,乙丙 10 天的工作量为(2+1)10=30,剩余工作量由甲完成需要(40-30)2=5 天,故甲休息了 1
24、0-5=5 天。7.小王和小李一起录入信息,小王比小李晚一天开始工作,且两人同时结束,已知小王的速度是小李的 1.2倍,小李工作了 6 天。问小王一个人完成这项工作,需要多少天?(分数:2.00)A.8B.10 C.12D.14解析:解析 设小李的效率为 5,则小王的效率为 6。工作总量为 56+6(6-1)=60,故小王一个人完成这项工作需要 606=10 天,故选 B。8.一项工作甲和乙一起做需要 10 天,乙和丙一起做需要 12 天,甲和丙一起做需要 15 天,问甲单独完成这项工作需要多少天?(分数:2.00)A.24 B.25C.28D.30解析:解析 特值法,设工作总量为 60,则甲
25、乙的效率和为 6,乙丙的效率和为 5,甲丙的效率和为 4,可得甲的效率为(6+4-5)2=2.5,甲单独完成该工作需要 602.5=24 天。9.水池上装有甲、乙两个大小不同的水龙头,单开甲龙头 1 小时可注满水池,现在两个水龙头同时注水,20 分钟可注满水池的 (分数:2.00)A.60 分钟B.120 分钟 C.125 分钟D.160 分钟解析:解析 甲注满要 1 小时,则 20 分钟甲注入水池总量的 ,乙 20 分钟注入水池总量的10.某座桥由甲施工队单独做 25 天后,再由乙施工队单独做 60 天即可完成。如果甲、乙两组施工队合作,需 40 天完成,现在甲施工队先单独做 34 天,然后
26、再由乙施工队来单独完成,还需要做_天。(分数:2.00)A.50B.44C.46D.48 解析:解析 方法一:分析题干,甲做 40 天、乙做 40 天的工作量等于甲先做 25 天、乙再做 60 天的工作量,对比后发现甲少做 15 天的工作量等于乙多做 20 天的工作量。工作总量一定,效率和时间成反比,则甲、乙两队效率比为 4:3。同理可得,“甲施工队先单独做 34 天”即甲少做 6 天的工作量与乙多做 x天的工作量相等,则 x=463=8 天,即乙还需要做 48 天。 方法二:设甲、乙两队的工作效率分别为 x、y,可得方程 25x+60y=40(x+y),解得 x:y=4:3。设工作总量为(4
27、+3)40=280,甲先做 34 天后剩余 280-434=144 工作量,乙还需做 1443=48 天。故选择 D。11.某工程需要 A、B、C 三个工程队中至少两个队共同合作完成,经过对三个工程队的工作效率分析后得知,该工程最快需要 10 天,最慢需要 30 天完成。问该工程的完成时间可能为下列哪个?(分数:2.00)A.25 天B.19 天C.15 天D.12 天 解析:解析 根据题意可知,最快的情况是三个工程队一起合作,最慢的情况是效率最低的两个工程队合作,假设三个工程队按照效率快慢分别是 A、B、C,设总工程量是 30k,则12.甲、乙、丙三队合修一条公路,五天后,甲修的是乙、丙总和
28、的三分之一,乙修的是甲、丙总和的五分之一,已知甲比乙多修 4.8 千米,则丙队修了_。(分数:2.00)A.9.6 千米B.14.4 千米C.24 千米D.33.6 千米 解析:解析 假设甲、乙、丙三队分别修了 x、y、z 千米,则有, 解得13.运送一批货物总运费为 4200 元,A、B 两家运输公司同时运送 8 小时完成,A 公司单独运送需 14 小时完成。现由 A 公司单独运送若干小时后,再由 B 公司单独运送剩下的货物,这样共用 18 小时全部运完。那么 A、B 两公司应分别获得_。(分数:2.00)A.2100 元,2100 元B.600 元,3600 元 C.1400 元,2800
29、 元D.800 元,3400 元解析:解析 A 公司每小时运送 ,B 公司每小时运送 ;那么 A 每小时运送 元货物,B 每小时运送14.有一批零件,甲、乙两种车床都可以加工。如果甲车床单独加工,可以比乙车床单独加工提前 10 天完成任务。现在用甲、乙两车床一起加工,结果 12 天就完成了任务。如果只用甲车床单独加工需多少天完成任务?(分数:2.00)A.20 天 B.30C.40D.45解析:解析 设甲单独加工 x 天,乙单独加工(x+10)天完成,则他们的效率分别是 、 ,合作的效率是 。根据题意,列方程15.A、B、C 共三个进水口,A 为主进水口,A 水流的速度是 B、C 水流速度之和
30、的两倍,B 单独进水需要50 小时将容器装满;B、C 同时进水 10 小时后打开 A,还需 5 小时才能将容器装满,问若 A、C 同时进水需要几小时将容器装满?(分数:2.00)A.5B.5.5C.9D.10 解析:解析 设容器容量为 1,A、B、C 进水口的水流速度分别为 x、y、z,则有 解得 故 A、C 同时进水需要 16.甲、乙、丙、丁四个工厂联合完成一批玩具的生产任务,如果四个工厂同时工作,需要 10 个工作日完成;如果交给甲、乙两个工厂,需要 24 个工作日完成;如果交给乙、丙两个工厂,所需时间比交给甲、丁两个工厂少用 15 个工作日。已知甲、乙两厂每天生产的件数差与丙、丁两厂每天
31、生产的件数差相同,问如果单独交给丁工厂,需要多少个工作日完成?(分数:2.50)A.30B.48 C.60D.80解析:解析 设总工作量为 240,设四个工厂的效率依次为甲、乙、丙、丁,可列方程组甲+乙+丙+丁=24;甲+乙=10,代入则丙+丁=14; ;|甲-乙|=|丙-丁|,由知乙+丙甲+丁,由可知甲-乙=丁-丙(或甲-乙=丙-丁,则乙+丙=甲+丁,矛盾)。故可得甲+丙=乙+丁=12。由此可得,四家工厂的工作效率为甲=3,乙=7,丙=9,丁=5。则单独交给丁所需时间为17.加工一批零件,原计划每天加工 15 个,若干天可以完成。当完成加工任务的 (分数:2.50)A.1500B.2250
32、C.1800D.2700解析:解析 效率提高 20%的话每天可以加工 151.2=18 个,比以前多 3 个。从而导致提前 10 天结束工作,则效率提高后共生产了 15103=50 天。该部分的工作量占全部任务的 ,则共有零件185018.早上 7 点两组农民开始在麦田里收割麦子,其中甲组 20 人,乙组 15 人。8 点半,甲组分出 10 人捆麦子;10 点,甲组将本组所有已割的麦子捆好后,全部帮乙组捆麦子;如果乙组农民一直在割麦子,且假设每个农民的工作效率相同,则乙组捆好所有已割麦子的时间是_。(分数:2.50)A.10:45B.11:00 C.11:15D.11:30解析:解析 设每人每
33、小时收割 1 份麦子,则甲组总共收割了 201.5+101.5=45,10 人捆这些麦子用时 1.5 小时,451.510=3,即每人每小时捆 3 份麦子。设甲组帮乙组捆 x 小时,则乙组共收割153+15x=203x,解得 x=l。即 11 点捆好。19.一批零件,如果第一天甲做,第二天乙做,这样交替轮流做,完成的天数恰好是整数。如果第一天乙做,第二天甲做,这样交替轮流做,做到上次轮流完成时所用的天数后,还剩 40 个不能完成,已知甲、乙工作效率的比是 7:3。问甲每天做多少个?(分数:2.50)A.30B.40C.70 D.120解析:解析 由于甲、乙调换顺序后在相同时间内没有完成工程,所
34、以上次轮流完成所用的天数肯定是奇数。40 个相当于乙比甲一天少做的个数,所以甲每天做的个数是20.A、B、C 三辆卡车一起运输 1 次,正好能运完一集装箱的某种货物。现三辆卡车一起执行该种货物共40 集装箱的运输任务,A 运 7 次、B 运 5 次、C 运 4 次,正好运完 5 集装箱的量。此时 C 车休息,而 A、B车各运了 21 次,又完成了 12 集装箱的量。问如果此后换为 A、C 两车同时运输,至少还需要各运多少次才能运完剩余的该种货物?(分数:2.50)A.30B.32C.34D.36 解析:解析 设卡车效率分别为 A、B、C,由题目给出的条件可知, 此时还剩下 40-5-12=23
35、 箱,由 A 和 C 一起运, 21.有 20 人修一条路,计划 15 天完成。动工 3 天后抽出 5 人植树,留下的人继续修路。如果每人工作的效率不变,那么修完这段公路实际用多少天?(分数:2.50)A.16B.17C.18D.19 解析:解析 方法一,设修完这段公路实际用了 x 天,则根据题意有 2015=203+(20-5)(x-3),解得 x=19。 方法二,设每人每天干活的工作量为 1 个单位,那么根据题意,20 个人干 15 天也可以理解为 15 人干活需要干满 20 天。因为另有 5 个人干了 3 天,即相当于 15 个人干了一天的活,所以 15 人现在只需干活20-1=19 天
36、。22.有甲、乙两项工程,张师傅单独完成甲工程需 6 天,单独完成乙工程需 30 天,李师傅单独完成甲工程需 18 天,单独完成乙工程需 24 天,若合作两项工程,最少需要的天数为_。(分数:2.50)A.16 天 B.15 天C.12 天D.10 天解析:解析 李师傅先做乙工程,张师傅先用 6 天完成甲工程,之后与李师傅一块完成乙工程,所需的天数最少。李师傅 6 天完成乙工程 ,余下的张师傅与李师傅一起合作需要(1-23.一件工作甲先做 6 小时,乙接着做 12 小时可以完成。甲先做 8 小时,乙接着做 6 小时也可以完成。如果甲先做 3 小时后,再由乙接着做,还需要多少小时完成?(分数:2
37、.50)A.16B.18C.21 D.24解析:解析 比较可知甲做 8-6=2 个小时的工作量,相当于乙要做 12-6=6 小时,则这项工作乙一个人要花 626+12=18+12=30 小时完成。甲先做 3 小时后,剩下的工作量乙还需要做 30-326=30-9=21 小时。24.某施工队计划用 120 个劳动力在规定时间内完成一定的挖土任务,施工 25 天后。因调走 30 人,于是每人每天必须多挖 1 方土才能在规定时间内完成任务。问在 25 天后每人每天挖土多少方?(分数:2.50)A.3B.4 C.5D.6解析:解析 人员调动后,30 人每天挖的土等于 120-30=90 人每天多挖的土
38、,也就是 30 人每天挖的土是 901=90 方土。那么,前 25 天,每人每天挖 9030=3 方土。25 天后,每人每天挖土 3+1=4 方。25.铺设一条自来水管道,甲队单独铺设 8 天可以完成,而乙队每天可铺设 50 米。如果甲、乙两队同时铺设,4 天可以完成全长的 (分数:2.50)A.1000B.1100C.1200 D.1300解析:解析 甲队铺设 4 天可完成全长的 ,那么乙队铺设的 504=200 米相当于全长的 ,那么全长为26.一项工程由甲、乙、丙三个工程队共同完成需要 15 天,甲队与乙队的工作效率相同,丙队 3 天的工作量与乙队 4 天的工作量相当。三队同时开工 2
39、天后,丙队被调往另一工地,甲乙两队留下继续工作。那么,开工 22 天后,这项工程_。(分数:2.50)A.已经完工B.余下的量需甲乙两队共同工作 1 天C.余下的量需乙丙两队共同工作 1 天D.余下的量需甲乙丙三队共同工作 1 天 解析:解析 由于丙队 3 天的工作量与乙队 4 天的工作量相当,不妨假设丙队每天的工作量为 4,乙队每天的工作量为 3,则甲队每天的工作量为 3。这项工程总的工作量为(4+3+3)15=150,则工作 22 天后,工程还剩下 150-(4+3+3)2-(3+3)(22-2)=10 的工作量,正好让甲、乙、丙三队共同工作 1 天。27.某工程,由甲、乙两队承包, 天可
40、以完成,需支付 1800 元;由乙、丙两队承包, 天可以完成,需支付 1500 元;由甲、丙两队承包, (分数:2.50)A甲B乙 C丙D.甲和丙解析:解析 设任务总量为 1,甲、乙、丙每天完成的任务量分别为 x、y、z,则有(x+y) =1;。得到 。设甲、乙、丙每天费用分别为 a、b、c,甲、乙两队每天费用和为 元;乙、丙两队每天费用和为 元,甲、丙两队每天费用和为28.同时点燃两根相同长度的蜡烛,一根粗些,可以点 5 小时,一根细些,可以点 4 小时,当把两根蜡烛同时吹灭时,粗蜡的长度正好是细蜡的 4 倍,吹灭时,蜡烛已点了_。(分数:2.50)A.1 小时 55 分B.2 小时 50
41、分C.4 小时 30 分D.3 小时 45 分 解析:解析 特设蜡烛的总长度均为 20,则每小时粗蜡烛燃烧 4,细蜡烛每小时燃烧 5,设已点了 x 小时,则 20-4x=4(20-5x),解得29.一个水池有三个进水口和一个出水口,同时打开一个出水口和两个进水口,注满整个水池分别需要 6小时、5 小时和 4 小时;同时打开一个出水口和三个进水口,注满整个水池需要 3 小时。如果同时打开三个进水口不打开出水口,注满整个水池需要多久? A1 小时 B2 小时 C 小时 D (分数:2.50)A.B.C. D.解析:解析 三个进水口对应的进水效率分别为 ,因此三个进水口的效率和为 ,注满整个水池需要
42、30.有两个工程队完成一项工程,甲队每工作 6 天后休息 1 天,单独做需要 76 天完工;乙队每工作 5 天后休息 2 天,单独做需要 89 天完工,照这样计算,两队合作,从 1998 年 11 月 29 日开始动工,到 1999 年几月几日才能完工?(分数:2.50)A.1 月 9 日B.1 月 10 日C.1 月 11 日D.1 月 8 日 解析:解析 将休息时间算进去,7 天为一个周期。甲单独做了 76 天完工,因为 767=106,所以实际做 610+6=66 天。乙单独做 89 天,因为 897=125,所以实际工作 512+5=65 天。则甲乙的工作效率分别为 。在一个 7 天周
43、期内合作共完成31.用甲、乙、丙三个排水管排水,甲管排出 1 立方米水的时间,乙管能排出 1.25 立方米的水,丙管能排出 1.5 立方米的水。现在要排完某个水池的水,先开甲管,2 小时后开乙管,几小时后再开丙管,到下午4 时正好把水排完,且各个排水管排出的水量正好相等。问什么时候打开的丙管?(分数:2.50)A.8 点B.9 点C.9 点 20 分 D.9 点 40 分解析:解析 假设甲管每小时排 1 立方米,那么乙每小时排 1.25 立方米,丙排 1.5 立方米。甲先排出12=2 立方米,乙每小时比甲多排 0.25 立方米,需要乙排放 20.25=8 小时才能赶上甲的排放量。设乙开后 x
44、小时打开丙,那么乙比丙多排 1.25x 立方米的水,丙每小时比乙多排 0.25 立方米则有1.25x=0.25(8-x),得到 。因此丙是在 4 点前32.移栽果苗若干颗,如果小明、小王二人合栽,8 小时完成。先由小明栽了 3 小时后,又由小王栽了 1小时,还剩下总棵树的 (分数:2.50)A.112 B.115C.148D.160解析:解析 设小王每小时栽 x 棵,小明每小时栽(x+7)棵,则依据题意有,3(x+7)+x= 8(2x+7),解得33.甲的工作效率是乙和丙的效率之和,乙的工作效率是丙的 1.5 倍。现有一项工作,3 人合作 5 天后完成了全部工作的 (分数:2.50)A.13
45、B.15C.16D.26解析:解析 因为甲的工作效率是乙和丙的效率之和,乙的工作效率是丙的 1.5 倍,设丙的效率为 2,则乙的效率为 3,甲的效率为 5,又因为 3 人合作 5 天后完成了全部工作的 ,所以总工作量为(5+3+2)52=100,剩余34.地铁工程在某 1000 米路段地下施工,两头并进,一侧地铁盾构机施工,每天掘进 3 米,工作 5 天,休息一天进行检修;另一侧人工轮岗不休,每天掘进 1 米,多少天此段打通?(分数:2.50)A.286 B.285C.282D.288解析:解析 根据题意,一侧每 6 天挖 35=15 米,另一侧每 6 天挖 6 米,则35.甲乙丙三人共同完成
46、一项工程,他们工作 5 天后完成工程的一半,接着丙退出,甲乙继续工作 3 天后又完成剩下工程的一半,然后乙也退出,甲独自工作 5 天后完成全部工程。若乙单独完成该工程,则需要的天数为_。(分数:2.50)A.20B.30 C.40D.60解析:解析 根据题意,甲在最后 5 天完成了总工程的 ,因此甲的工作效率为 ,又知甲乙合作 3 天完成了总工作的 ,因此乙的工作效率为36.有一项工程甲公司花 6 天,乙公司再花 9 天可以完成,或者甲公司花 8 天,乙公司再花 3 天可以完成,如果这项工程由甲或乙单独完成,则甲公司所需天数比乙公司少_天。(分数:2.50)A.15B.18 C.24D.27解
47、析:解析 由题意,这项工程甲公司花 6 天,乙公司再花 9 天或者甲公司花 8 天,乙公司再花 3 天可以完成,那么甲公司 8-6=2 天的工作量相当于乙公司 9-3=6 天的工作量,故乙公司和甲公司的工作效率之比是 2:6=1:3。甲公司完成这项工作需要37.某项工程若由甲、乙两队合作需 105 天完成,甲、丙两队合作需 60 天,丙、丁两队合作需 70 天,甲、丁两队合作需 84 天。问这四个工程队的工作效率由低到高的顺序是什么?(分数:2.50)A.乙、丁、甲、丙 B.乙、甲、丙、丁C.丁、乙、丙、甲D.乙、丁、丙、甲解析:解析 工作时间与效率成反比,因此根据题意,甲+乙甲+丙,因此乙效
48、率丙效率;甲+丙丁+丙,因此甲效率丁效率;甲+乙甲+丁,因此乙效率丁效率;甲+丁丙+丁,因此甲效率丙效率。因此,四个人效率从低到高依次为乙、丁、甲、丙。38.A、B 两条流水线每小时均能装配 1 辆汽车。A 流水线每装配 3 辆汽车要用 1 小时维护,B 流水线每装配 4 辆汽车要用 1.5 小时维护。问两条流水线同时开始工作,装配 200 辆汽车需用多少个小时?(分数:2.50)A.134B.135 C.136D.137解析:解析 根据题意,A 流水线 4 小时装配 3 辆汽车,B 流水线 5.5 小时装配 4 辆汽车,因此每 44 小时(44 是 4.55 的公倍数,是为了便于分析和计算)A 流水线装配汽车 33 辆,B 流水线装配 32 辆,(32+33)3=195 辆,耗时 443=132 小时。余下五辆车分给两个流水线,最快需要 3 小时完成。冈此共需要132+3=135 小时。39.王明抄写一份报告,如果每分钟抄写 30 个字,则用若干小时可以抄完。当抄完 (分数:2.50)A.6025B.7200C.7250D.5250 解析:解析 工作效率提高后,原工作效率与现在的工作效率之比为 1:1.4=5:7,则所需时间比为效率的反比 7:5,可知原计划抄完剩下的40.某项工程计划 300 天完成,开工 100 天后,由于施工人员减少,工作效率下降 20%,问完成该工