1、 2012年恩施州中考数学试题 一、选择题(本大题共 12 小题,每小题 3 分,共 36 分) 1( 2012恩施州) 5 的相反数是( ) A B 5 C 5 D 考点 : 相反数。 分析: 据相反数的性质,互为相反数的两个数和为 0,采用逐一检验法求解即可 解答: 解:根据概念,( 5 的相反数) +5=0,则 5 的相反数是 5 故选 B 点评: 本题考查了相反数的意义,一个数的相反数就是在这个数前面添上 “ ”号:一个正数的相反数是负数,一个负数的相反数是正数, 0 的相反数是 0 2 ( 2012恩施州)恩施生态旅游初步形成, 2011 年全年实现旅游综合收入 908600000
2、元数908600000 用科学记数法表示(保留三个有效数字),正确 的是( ) A 9.09109 B 9.0871010 C 9.08109 D 9.09108 考点 : 科学记数法与有效数字。 分析: 较大的数保留有效数字需要用科学记数法来表示用科学记数法保留有效数字,要在标准形式 a10n中 a 的部分保留,从左边第一个不为 0 的数字数起,需要保留几位就数几位,然后根据四舍五入的原理进行取舍 解答: 解: 908600000=9.0861099.09109故选 A 来源 :学 +科 +网 Z+X+X+K 点评: 本题考查了科学记数法及有效数字的定义 用科学记数法表示一个数的方法是:(
3、1)确定 a, a 是只有一位整数的数;( 2)确定 n;当原数的绝对 值 10时, n 为正整数, n 等于原数的整数位数减 1;当原数的绝对值 1 时,n 为负整数, n 的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上零) 从左边第一个不是 0 的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字 3 ( 2012恩施州)一个用于防震的 L 形包装塑料泡沫如图所示,则该物体的俯视图是( ) A B C D 考点 : 简单组合体的三视图。 分析: 根据组合体的排放顺序可以得到正确的答案 解答: 解:从上面看该组合体的俯视图是一个矩形,并且被一条棱隔开,故选 B 点评
4、: 本题考查几何体的三种视图,比较简单解决此题既要有丰富的数学知识,又要有一定的生活经验 4( 2012恩施州)下列计算正确的是( ) A ( a4) 3=a7 B 3( a 2b) =3a 2b C a4+a4=a8 D a5a 3=a2 考点 : 同底数幂的除法;合并同类项;去括号与添括号;幂的乘方与积的乘方。 分析: 利用幂的乘方、去括号、合并同类项与同底数幂的除法法则,即可求得答案,注意排除法在解选择题中的应用 解答: 解: A、( a4) 3=a12,故本选项错误; B、 3( a 2b) =3a 6b,故本选项错误; C、 a4+a4=2a4,故本选项错误; D、 a5a 3=a2
5、,故本选项正确 故选 D 点评: 此题考查了幂的乘方、去括号、合并同类项与同底数幂的除法此题比较简单, 注意掌握指数的变化 5( 2012恩施州) a4b 6a3b+9a2b 分解因式得正确结果为( ) A a2b( a2 6a+9) B a2b( a 3)( a+3) C b( a2 3) 2 D a2b( a 3) 2 考点 : 提公因式法与公式法的综合运用。 分析: 先提取公因式 a2b,再根据完全平方公式进行二次分解即可求得答案 解答: 解: a4b 6a3b+9a2b=a2b( a2 6a+9) =a2b( a 3) 2 故选 D 点评: 本题考查了提公因式法,公式法分解因式的知识注
6、意提取公 因式后利用完全平方公式进行二次分解,注意分解要彻底 6( 2012恩施州) 702 班某兴趣小组有 7 名成员,他们的年龄(单位:岁)分别为: 12, 13, 13,14, 12, 13, 15,则他们年龄的众数和中位数分别为( ) A 13, 14 B 14, 13 C 13, 13.5 D 13, 13 考点 : 众数;中位数。 分析: 找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个 解答: 解:在这一组数据中 32 是出现次数最多的,故众数是 13; 按大小排列后,处于这组数据中间位置的
7、数是 13,那么由中位数的定义可知,这组数据的中位数是 13 故选: D 点评: 此题主要考查了众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错 7( 2012恩施州)如图, AB CD,直线 EF 交 AB 于点 E,交 CD 于点 F, EG 平分 BEF,交CD 于点 G, 1=50,则 2 等于( ) A 50 B 60 C 65 D 90 考点 : 平行线的性质;角平分线的定义。 分析: 由 AB CD, 1=50,根据两直线平行,同旁内角
8、互补,即可求得 BEF 的度数,又由EG 平分 BEF,求得 BEG 的度数,然后根据两直线平行,内错角相等,即可求得 2的度数 解答: 解: AB CD, BEF+ 1=180, 1=50, BEF=130, EG 平分 BEF, BEG= BEF=65, 2= BEG=65 故选 C 点评: 此题考 查了平行线的性质与角平分线的定义此题比较简单,注意掌握两直线平行,同旁内角互补与两直线平行,内错角相等定理的应用 8( 2012恩施州)希望中学开展以 “我最喜欢的职业 ”为主题的调查活动,通过对学生的随机抽样调查得到一组数据,如图是根据这组数据绘制的不完整的统计图,则下列说法中,不正确的是(
9、 ) A 被调查的学生有 200 人 B 被调查的学生中喜欢教师职业的有 40 人 C 被调查的学生中喜欢其他职业的占 40% D 扇形图中,公务员部分所对应的圆心角为 72 考点 : 条形统计图;扇形统计图。 分析: 通过对比条形统计图和扇形统计图可知:喜欢的职业是公务员的有 40 人,占样本的 20%,所以被调查的学生数即可求解;各个扇形的圆心角的度数 =360该部分占总体的百分比,乘以 360 度即可得到 “公务员 ”所在扇形的圆心角的度数,结合扇形图与条形图得出即可 解答: 解: A被调查的学生数为 =200(人),故此选项正确,不符合题意; B根据扇形图可知喜欢医生职业的人数为: 2
10、0015%=30 人, 则被调查的学生中喜欢教师职业的有: 200 30 40 20 70=40(人), 故此选项正确,不符合题意; C被调查的学生中喜欢其他职业的占: 100%=35%,故此选项错误,符合题意 D “公务员 ”所在扇形的圆心角的度数为:( 1 15% 20% 10% 100%) 360=72,故此选项正确,不符合题意; 故选: C 点评: 本题考查的是条形统计图和扇形统计图的综合运用读懂统计图,从不同的统计图中得到 必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为 1,直接反映部分占总体的百分比大小 9( 2012恩施
11、州)如图,两个同心圆的半径分别为 4cm和 5cm,大圆的一条弦 AB 与小圆相切,则弦 AB 的长为( ) A 3cm B 4cm C 6cm D 8cm 考点 : 切线的性质;勾股定理;垂径定理。 分析: 首先连接 OC, AO,由切线的性质,可得 OC AB,由垂径定理可得 AB=2AC,然后由勾股定理求得 AC 的长,继而可求得 AB 的长 解答: 解:如图,连接 OC, AO, 大圆的一条弦 AB 与小圆相切, OC AB, AC=BC= AB, OA=5cm, OC=4cm, 在 Rt AOC 中, AC= =3cm, AB=2AC=6( cm) 故选 C 点评: 此题考查了切线的
12、性质、垂径定理以及勾股定理此题难度不大,注意数形结合思想的应用,注意掌握辅助线的作法 10( 2012恩施州)已知直线 y=kx( k 0)与双曲线 y= 交于点 A( x1, y1), B( x2, y2)两点,则 x1y2+x2y1的值为( ) A 6 B 9 C 0 D 9 考点 : 反比例函数图象的对称性。 专题 : 探究型。 分析: 先根据点 A( x1, y1), B( x2, y2)是双曲线 y= 上的点可得 出 x1y1=x2y2=3,再根据直线 y=kx( k 0)与双曲线 y= 交于点 A( x1, y1), B( x2, y2)两点可得出 x1= x2, y1= y2,再
13、把此关系代入所求代数式进行计算即可 解答: 解: 点 A( x1, y1), B( x2, y2)是双曲线 y= 上的点 x1y1=x2y2=3 , 直线 y=kx( k 0)与双曲线 y= 交于点 A( x1, y1), B( x2, y2)两点, x1= x2, y1= y2 , 原式 = x1y1 x2y2= 3 3= 6 故选 A 点评: 本题考查的是反比例函数的对 称性,根据反比例函数的图象关于原点对称得出 x1= x2,y1= y2是解答此题的关键 11( 2012恩施州)某大型超市从生产基地购进一批水果,运输过程中质量损失 10%,假设不计超市其他费用,如果超市要想至少获得 20
14、%的利润,那么这种水果的售价在进价的基础上应至少提高( ) A 40% B 33.4% C 33.3%来源 :Zxxk.Com D 30% 考点 : 一元一次不等式的应用。 分析: 缺少质量和进价,应设购进这种水果 a 千克,进价为 y 元 /千克,这种 水果的售价在进价的基础 上应提高 x,则售价为( 1+x) y 元 /千克,根据题意得:购进这批水果用去 ay 元,但在售出时,大樱桃只剩下( 1 10%) a 千克,售货款为( 1 10%)( 1+x) y 元,根据公式 100=利润率可列出不等式,解不等式即可 解答: 解:设购进这种水果 a 千克,进价为 y 元 /千克,这种水果的售价在
15、进价的基础上应提高 x,则售价为( 1+x) y 元 /千克,由题意得: 100%20%, 解得: x , 超市要想至少获得 20%的利润, 这种水果的售价在进价的基础上应至少提高 33.4% 故选: B 点评: 此题主要考 查了一元一次不等式的应用,关键是弄清题意,设出必要的未知数,表示出售价,售货款,进货款,利润注意再解出结果后,要考虑实际问题,利用收尾法,不能用四舍五入 12( 2012恩施州)如图,菱形 ABCD 和菱形 ECGF 的边长分别为 2 和 3, A=120,则图中阴影部分的面积是( ) A B 2 C 3 D 考点 : 菱形的性质;解直角三角形。 专题 : 常规题型。 分
16、析: 设 BF、 CE 相交于点 M,根据相似三角形对应边成比例列式求出 CG 的长度,从而得到DG 的长度,再求出菱形 ABCD 边 CD 上的高与菱形 ECGF 边 CE 上的高,然后根据阴影部分的面积 =S BDM+S DFM,列式计算即可得解 解答: 解:如图,设 BF、 CE 相交于点 M, 菱形 ABCD 和菱形 ECGF 的边长分别为 2 和 3, BCM BGF, = , 即 = , 解得 CM=1.2, DM=2 1.2=0.8, A=120, ABC=180 120=60, 菱形 ABCD 边 CD 上的高为 2sin60=2 = , 菱形 ECGF 边 CE 上的高为 3
17、sin60=3 = , 阴影部分面积 =S BDM+S DFM= 0.8 + 0.8 = 故选 A 点评: 本题考查了菱形的性质,解直角三角形,把阴影部分分成两个三角形的面积,然后利用相似三角形对应边成比例求出 CM 的长度是解题的关键 二、填空题(本大题共 4 小题,每小题 3 分,共 12 分) 13( 2010随州) 2 的平方根是 来源 :学科网 考点 : 平方根。 分析: 直接根据平方根的定义求解即可(需注意一个正数有两个平方根) 解答: 解: 2 的平方根是 故答案为: 点评: 本题考查了平方根的定义注意一个正数有 两个平方根,它们互为相反数; 0 的平方根是0;负数没有平方根 1
18、4( 2012恩施州)当 x= 2 时,函数 y= 的值为零 考点 : 函数值;分式的值为零的条件。 专题 : 计算题。 分析: 令函数值为 0,建立关于 x 的分式方程,解分式方程即可求出 x 的值 解答: 解:令 =0, 去分母得, 3x2 12=0, 移项系数化为 1 得, x2=4, x=2 或 x= 2 检验:当 x=2 时, x 2=0,故 x=2 不是原方程的解; 当 x= 2 时, x 20,故 x= 2 是原方程的解 故答案为 2 点评: 本题考 查了函数的值和分式值为 0 的条件,解分式方程时要注意检验 15( 2012恩施州)如图,直线 y=kx+b 经过 A( 3, 1
19、)和 B( 6, 0)两点,则不等式组 0 kx+b x 的解集为 3 x 6 考点 : 一次函数与一元一次不等式。 专题 : 计算题。 分析: 将 A( 3, 1)和 B( 6, 0)分别代入 y=kx+b,求出 k、 b 的值,再解不等式组 0 kx+b x的解集 解答: 解:将 A( 3, 1)和 B( 6, 0)分别代入 y=kx+b 得, , 解得 , 则函数解析式为 y= x+2 可得不等式组 , 解得 3 x 6 故答案为 3 x 6 点评: 本题考查了一次函数与一元一次不等式,利用待定系数法求出函数解析式是解题的关键 16( 2012恩施州)观察数表 根据表中数的排列规律,则
20、B+D= 23 考点 : 规律型:数字的变化类。 分析: 仔细观察每一条虚线或与虚线平行的直线上的数字从左至右相加等于最后一个数字,据此规律求得 B、 D 相加即可 解答: 解: 仔细观察每一条虚线或与虚线平行的直线上的数字从左至右相加等于最后一个数字, 1+4+3=B=8, 1+7+D+10+1=34, B=8, D=15, B+D=8+15=23 故答案为 23 点评: 本题考查了数字的变化类问题,解题的关键是找到各个数字之间的规律并利用找到的规律求得 B 和 D 的值求解 三、解答题(本大题共 8 小题,共 72 分) 17( 2012恩施州)先化简,再求值: ,其中 x= 2 考点 :
21、 分式的化简求值。 专题 : 计算题。 分析: 先根据分式混合运算的法则把原式进行化简,再把 x 的值代入进行计算即可 解答: 解:原式 = , = , = = , 将 x= 2 代入上式,原式 = 点评: 本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的关键 18( 2012恩施州)如图,在 ABC 中, AD BC 于 D,点 D, E, F 分别是 BC, AB, AC 的中点求证:四边形 AEDF 是菱形 考点 : 菱形的判定;三角形中位线定理。 专题 : 证明题。 分析: 首先判定四边形 AEDF 是平行四边形,然后证得 AE=AF,利用邻边相等的平行四边形是菱形判定菱
22、形即可 解答: 证明: 点 D, E, F 分别是 BC, AB, AC 的中点, DE AC, DF AB, 四边形 AEDF 是平行四边 形, 又 AD BC, BD=CD, AB=AC, AE=AF, 平行四边形 AEDF 是菱形 点评: 本题考查了菱形的判定及三角形的中位线定理,菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法: 定义, 四边相等, 对角线互相垂直平分 19( 2012恩施州)某市 今年的理化生实验操作考试,采用学生抽签的方式决定自己的考试内容规定:每位考生从三个物理实验题(题签分别用代码 W1, W2, W3表示)、三个化学物实验题(题签分别用代码 H1、
23、 H2、 H3表示),二个生物实验题(题签分别用代 码 S1, S2表示)中分别抽取一个进行考试小亮在看不到题签的情况下,从他们中随机地各抽取一个题签 ( 1)请你用画树状图的方法,写出他恰好抽到 H2的情况; ( 2)求小亮抽到的题签代码的下标(例如 “W2”的下标为 “2”)之和为 7 的概率是多少? 考点 : 列表法与树状图法。 分析: ( 1)首先根据题意画出树状图,由树状图求得所有等可能的结果与他恰好抽到 H2的情况; ( 2)由( 1),可求得小亮抽到的题签代码的下标(例如 “W2”的下标为 “2”)之和为 7 的情况,然后利用概率公式求解即可求得答案 解答: 解:( 1)画树状图
24、得: 由上可知,恰好抽到 H2的情况有 6 种,( W1, H2, S1),( W1, H2, S2),( W2, H2, S1),( W2, H2, S2),( W3, H2, S1),( W3, H2, S2); ( 2) 由( 1)知,下标之和为 7 有 3 种情况 小亮抽到的题签代码的下标(例如 “W2”的下标为 “2”)之和为 7 的概率为: = 点评: 此题考查的是用树状图法求概率的知识树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;注意概率 =所求情况数与总情况数之比 20( 2012恩施州) 如图,用纸折出黄金分割点:裁一张正方的纸片 ABCD,先折
25、出 BC 的中点 E,再折出线段 AE,然后通过折叠使 EB 落到线段 EA 上,折出点 B 的新位置 B,因而 EB=EB类似地,在 AB 上折出点 B使 AB=AB这是 B就是 AB 的黄金分割点请你证明这个结论 考点 : 黄金分割。 专题 : 证明题。 分析: 设正方形 ABCD 的边长为 2,根据勾股定理求出 AE 的长,再根据 E 为 BC 的中点和翻折不变性,求出 AB的长,二者相比即可得到黄金比 解答: 证明:设正方形 ABCD 的边长为 2, E 为 BC 的中点, BE=1 AE= = , 又 BE=BE=1, AB=AE BE= 1, AB: AB=( 1) AB 点 B是
26、线段 AB 的黄金分割点 点评: 本题考查了黄金分割的应用,知道黄金比并能求出黄金比是解题的关键 21( 2012恩施州)新闻链接,据 侨报网讯 外国炮艇在南海追袭中国渔船被中国渔政逼退 2012 年 5 月 18 日,某国 3 艘炮艇追袭 5 条中国渔船刚刚完成黄岩岛护渔任务的 “中国渔政 310”船人船未歇立即追往北纬 11 度 22 分、东经 110 度 45 分附近海域护渔,保护 100 多名中国 渔民免 受财产损失和人身伤害某国炮艇发现中国目前最先进的渔政船正在疾速驰救中国渔船,立即掉头离去(见图 1) 解决问题 如图 2,已知 “中国渔政 310”船( A)接到陆地指挥中心( B)
27、命令时,渔船( C)位于陆地指挥中心正南方向,位于 “中国渔政 310”船西南方向, “中国渔政 310”船位于陆地指挥中心南偏东 60方向, AB= 海里, “中国渔政 310”船最大航速 20 海里 /时根据以上信息,请你求出 “中国渔政 310”船赶往出事地点需要多少时间 考点 : 解直角三角形的应用 -方向角问题。 分析: 过点 A 作 AD BC 于点 D,在 Rt ABD 中利用锐角三角函数的定义求出 AD 的值,同理在 Rt ADC 中求出 AC 的值,再根据中国渔政 310”船最大航速 20 海里 /时求出所需时间即可 解答: 解:过点 A 作 AD BC 于点 D, 在 Rt
28、 ABD 中, AB= , B=60, AD=ABsin60= =70 , 在 Rt ADC 中, AD=70 , C=45, AC= AD=140, “中国渔政 310”船赶往出事地点所需时间为 =7 小时 答: “中国渔政 310”船赶往出事地点需要 7 小时 点评: 本题考查的是解直角 三角形的应用方向角问题,根据题意作出辅助线,构造出直角三角形,利用直角三角形的性质求解是解答此题的关键 22( 2012恩施州)小丁每天从某报社以每份 0.5 元买进报纸 200 分,然后以每份 1 元卖给读者,报纸卖不完,当天可退回报社,但报社只按每份 0.2 元退给小丁,如果小丁平均每天卖出报纸 x份
29、,纯收入为 y 元 ( 1)求 y 与 x 之间的函数关系式 (要求写出自变量 x 的取值范围); ( 2)如果每月以 30 天计算,小丁每天至少要买多少份报纸才能保证每月收入不低于 2000 元? 考点 : 一次函数的应用。 分析: ( 1)因为小丁每天从某市报社以每份 0.5 元买出报纸 200 份,然后以每份 1 元卖给读者,报纸卖不完,当天可退回报社,但报社只按每份 0.2 元退给小丁,所以如果小丁平均每天卖出报纸 x 份,纯收入为 y 元,则 y=( 1 0.5) x( 0.5 0.2)( 200 x)即 y=0.8x 60,其中 0x200且 x 为整数; ( 2)因为每月以 30
30、 天计,根据题意可得 30( 0.8x 60) 2000,解之即可求解 解答: 解:( 1) y=( 1 0.5) x( 0.5 0.2)( 200 x) =0.8x 60( 0x200); ( 2)根 据题意得: 30( 0.8x 60) 2000, 解得 x 故小丁每天至少要买 159 份报纸才能保证每月收入不低于 2000 元 点评: 此题主要考查了一次函数的应用,首先要正确理解题意,然后仔细分析题意,正确列出函数关系式,最后利用不等式即可解决问题 23( 2012恩施州)如图, AB 是 O 的弦, D 为 OA 半径的中点,过 D 作 CD OA 交弦 AB 于点 E,交 O 于点
31、F,且 CE=CB ( 1)求证: BC 是 O 的切线; ( 2)连接 AF, BF,求 ABF 的度数; ( 3)如果 CD=15, BE=10, sinA= , 求 O 的半径 考点 : 切线的判定;勾股定理;相似三角形的判定与性质;解直角三角形。 专题 : 几何综合题。 分析: ( 1)连接 OB,有圆的半径相 等和已知条件证明 OBC=90即可证明 BC 是 O 的切线; ( 2)连接 OF, AF, BF,首先证明 OAF 是等边三角形,再利用圆周角定理:同弧所对的圆周角是所对圆心角的一半即可求出 ABF 的度数; ( 3)过点 C 作 CG BE 于点 G,由 CE=CB,可求出
32、 EG= BE=5,又 Rt ADE Rt CGE和勾股定理求出 DE=2,由 Rt ADE Rt CGE 求出 AD 的长,进而求出 O 的半径 解答: ( 1)证明:连接 OB OB=OA, CE=CB, A= OBA, CEB= ABC 又 CD OA A+ AED= A+ CEB=90 OBA+ ABC=90 OB BC BC 是 O 的切线 ( 2)连接 OF, AF, BF, DA=DO, CD OA, OAF 是等边三角形, AOF=60 ABF= AOF=30 ( 3)过点 C 作 CG BE 于点 G,由 CE=CB, EG= BE=5 又 Rt ADE Rt CGE sin
33、 ECG=sin A= , CE= =13 CG= =12, 又 CD=15, CE=13, DE=2, 由 Rt ADE Rt CGE 得 = AD= CG= O 的半径为 2AD= 点评: 本题考查了切线的判定和性质,等边三角形的判定和性质、圆周角定理以及勾股定理和相似三角形的判定和性质,题目的综合性不小,难度也不小 24( 2012恩施州)如图,已知抛物线 y= x2+bx+c 与一直线相交于 A( 1, 0), C( 2, 3)两点,与 y 轴交于点 N其顶点为 D ( 1)抛物线及直线 AC 的函数关系式; ( 2)设点 M( 3, m),求使 MN+MD 的值最小时 m 的值; (
34、 3)若抛物线的对称轴与直线 AC 相交于点 B, E 为直线 AC 上的任意一点,过点 E 作 EF BD交抛物线于点 F,以 B, D, E, F 为顶点的四边形能否为平行四边形?若能,求点 E 的坐标;若不能,请说明理由; ( 4)若 P 是抛物线上位于直线 AC 上方的一个动点,求 APC 的面积的最大值 考点 : 二次函数综合题。 分析: ( 1)利用待定系数法求二次函数解析式、一次函数解析式; ( 2)根据两点之间线段最短作 N 点关于直线 x=3 的对称点 N,当 M( 3, m)在直线 DN上时, MN+MD 的值最小; ( 3)需要分类讨论: 当点 E 在线段 AC 上时,点
35、 F 在点 E 上方,则 F( x, x+3)和 当点 E 在线段 AC(或 CA)延长线上时,点 F 在点 E 下方,则 F( x, x 1),然后利用二次函数图象上点的坐标特征可以求得点 E 的坐标; ( 4)方法一:过点 P 作 PQ x 轴交 AC 于点 Q;过点 C 作 CG x 轴于点 G,如图 1设Q( x, x+1),则 P( x, x2+2x+3)根据两点间的距离公式可以求得线段 PQ= x2+x+2;最后由图示以及三角形的面积公式知 S APC= ( x ) 2+ ,所以由二次函数的最值的求法可知 APC 的面积的最大值; 方法二:过点 P 作 PQ x 轴交 AC 于点
36、Q,交 x 轴于点 H;过点 C 作 CG x 轴于点 G, 如图 2设 Q( x, x+1),则 P( x, x2+2x+3)根据图示以及三角形的面积公式知S APC=S APH+S 直角梯形 PHGC S AGC= ( x ) 2+ ,所以由二次函数的最值的求法可知 APC 的面积的最大值; 解答: 解:( 1)由抛物线 y= x2+bx+c 过点 A( 1, 0)及 C( 2, 3)得, , 解得 , 故抛物线为 y= x2+2x+3 又设直线为 y=kx+n 过点 A( 1, 0) 及 C( 2, 3)得 , 解得 故直线 AC 为 y=x+1; ( 2)作 N 点关于直线 x=3 的
37、对称点 N,则 N( 6, 3),由( 1)得 D( 1, 4), 故直线 DN的函数关系式为 y= x+ , 当 M( 3, m)在直线 DN上时, MN+MD 的值最小, 则 m= = ; ( 3)由( 1)、( 2)得 D( 1, 4), B( 1, 2) 点 E 在直线 AC 上, 设 E( x, x+1), 当点 E 在线段 AC 上时,点 F 在点 E 上方, 则 F( x, x+3), F 在抛物线上, x+3= x2+2x+3, 解得, x=0 或 x=1(舍去) E( 0, 1); 当点 E 在线段 AC(或 CA)延长线上时, 点 F 在点 E 下方, 则 F( x, x
38、1) 由 F 在抛物线上 x 1= x2+2x+3 解得 x= 或 x= E( , )或( , ) 综上,满足条件的点 E 为 E( 0, 1)、( , )或( , ); ( 4)方法一:过点 P 作 PQ x 轴交 AC 于点 Q;过点 C 作 CG x 轴于点 G,如图 1 设 Q( x, x+1),则 P( x, x2+2x+3) PQ=( x2+2x+3)( x 1) = x2+x+2 又 S APC=S APQ+S CPQ= PQAG = ( x2+x+2) 3 = ( x ) 2+ 面积的最大值为 方法二:过点 P 作 PQ x 轴交 AC 于点 Q,交 x 轴于点 H;过点 C 作 CG x 轴于点 G,如图 2, 设 Q( x, x+1),则 P( x, x2+2x+3) 又 S APC=S APH+S 直角梯形 PHGC S AGC= ( x+1)( x2+2x+3) + ( x2+2x+3+3)( 2 x) 33 = x2+ x+3 = ( x ) 2+ APC 的面积的最大值为 点评: 本题考查了二次函数综合题解答( 3)题时,要对点 E 所在的位置进行分类讨论,以防漏解