2014届高考数学总复习考点引领+技巧点拨第九章第2课时练习卷与答案(带解析).doc

上传人:dealItalian200 文档编号:322705 上传时间:2019-07-10 格式:DOC 页数:3 大小:23.73KB
下载 相关 举报
2014届高考数学总复习考点引领+技巧点拨第九章第2课时练习卷与答案(带解析).doc_第1页
第1页 / 共3页
2014届高考数学总复习考点引领+技巧点拨第九章第2课时练习卷与答案(带解析).doc_第2页
第2页 / 共3页
2014届高考数学总复习考点引领+技巧点拨第九章第2课时练习卷与答案(带解析).doc_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述

1、2014届高考数学总复习考点引领 +技巧点拨第九章第2课时练习卷与答案(带解析) 填空题 把直线方程 Ax By C 0(ABC0)化成斜截式为 _,化成截距式为 _ 答案: y - x- , 1 不论 m取何值,直线 (m-1)x-y 2m 1 0恒过定点 _ 答案: (-2, 3) 当过点 P(1, 2)的直线 l被圆 C: (x-2)2 (y-1)2 5截得的弦最短时,直线 l的方程为 _ 答案: x-y 1 0 已知直线 l1的方向向量为 a (1, 3),直线 l2的方向向量为 b (-1, k),若直线 l2经过点 (0, 5)且 l1 l2,则直线 l2的方程为 _ 答案: x

2、3y-15 0 直线 x a2y-a 0(a0, a是常数 ),当此直线在 x、 y轴上的截距和最小时,a _ 答案: 若点 P(1, 1)为圆 (x-3)2 y2 9的弦 MN的中点,则弦 MN所在直线的方程为 _ 答案: x-y-1 0 直线 l经过点 P(-5, -4),且与两坐标轴围成的三角形面积为 5,则直线 l的方程为 _ 答案: x-5y 20 0或 2x-5y-10 0 将直线 y 3x绕原点逆时针旋转 90,再向右平移 1个单位,所得到的直线方程为_ 答案: y - x 已知直线的点斜式方程为 y-1 - (x-2),则该直线另外三种特殊形式的方程为 _, _, _ 答案:

3、y - x , , 过点 (3, 6)作直线 l,使 l在 x轴, y轴上截距相等,则满足条件的直线方程为 _ 答案: x y-9 0, y 2x 已知直线 l过点 P(-2, 5),且斜率为 - ,则直线 l的方程为 _ 答案: x 4y-14 0 解答题 过点 M(0, 1)作一条直线,使它被两条直线 l1: x-3y 10 0, l2: 2x y-80所截得的线段恰好被 M点平分求此直线方程 答案: x 4y-4 0. 已知两点 A(-1, 2)、 B(m, 3) (1)求直线 AB的方程; (2)已知实数 m ,求直线 AB的倾斜角 的取值范围 答案:( 1) y-2 (x 1)( 2

4、) 求经过点 A(2, m)和 B(n, 3)的直线方程 答案:当 n2时, y-m (x-2),当 n 2时 x 2. 过点 P(1, 4)引一条直线,使它在两条坐标轴上的截距为正值,且它们的和最小,求这条直线的方程 答案: x y-6 0 设直线 l的方程为 (a 1)x y 2-a 0(a R) (1)若 l在两坐标轴上截距相等,求 l的方程; (2)若 l不经过第二象限,求实数 a的取值范围 答案:( 1) x y 2 0( 2) a-1. 已知 ABC中, A(1, -4), B(6, 6), C(-2, 0)求: (1) ABC中平行于 BC边的中位线所在直线的一般式方程和截距式方

5、程; (2)BC边的中线所在直线的一般式方程,并化为截距式方程 答案:( 1) 1( 2) 1 求过点 A(5, 2),且在坐标轴上截距互为相反数的直线 l的方程 答案: x-y-3 0或 2x-5y 0 直线 l经过点 (3, 2),且在两坐标轴上的截距相等,求直线 l的方程 答案: x-3y 0或 x y-5 0. 求经过点 A(-2, 2)且在第二象限与两个坐标轴围成的三角形面积最小时的直线的方程 答案: x-y 4 0 直线 l过点 M(2, 1),且分别交 x轴、 y轴的正半轴于点 A、 B.点 O是坐标原点 (1)当 ABO的面积最小时,求直线 l的方程; (2)当 最小时,求直线 l的方程 答案:( 1) x 2y-4 0( 2) x y-3 0 已知直线 l: 4-3m 0. (1)求证:不论 m为何实数,直线 l恒过一定点 M; (2)过定点 M作一条直线 l1,使夹在两坐标轴之间的线段被 M点平分,求直线 l1的方程 答案:( 1)见( 2) 2x y 4 0 已知直线 l: kx-y 1 2k 0. (1)求证:直线 l过定点; (2)若直线 l交 x轴负半轴于点 A,交 y正半轴于点 B, AOB的面 积为 S,试求 S的最小值并求出此时直线 l的方程 答案:( 1)见( 2) x-2y 4 0.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 考试资料 > 中学考试

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1