1、ANSI/AGMA2004-C08ANSI/AGMA 2004-C08Reaffirmed March 2014AMERICAN NATIONAL STANDARDGear Materials, Heat Treatment andProcessing Manualii AGMA2008 - AllrightsreservedGear Materials, Heat Treatment and Processing ManualANSI/AGMA2004-C08Approval of an American National Standard requires verification by
2、ANSI that therequirementsfordueprocess,consensus,andothercriteriaforapprovalhavebeenmetbythestandardsdeveloper.Consensusisestablishedwhen,inthejudgmentoftheANSIBoardofStandardsReview,substantial agreement has been reached by directly and materially affected interests.Substantial agreement means much
3、 more than a simple majority, but not necessarilyunanimity. Consensusrequiresthatallviewsandobjectionsbeconsidered,andthataconcertedeffortbemadetowardtheirresolution.TheuseofAmericanNationalStandardsiscompletelyvoluntary;theirexistencedoesnotin any respect preclude anyone, whether he has approved th
4、e standards or not, frommanufacturing,marketing,purchasing,orusingproducts,processes,orproceduresnotconformingtothestandards.The American National Standards Institute does not develop standards and will in nocircumstancesgiveaninterpretationofanyAmericanNationalStandard. Moreover,nopersonshallhaveth
5、erightorauthoritytoissueaninterpretationofanAmericanNationalStandard in the name of the American National Standards Institute. Requests forinterpretationofthisstandardshouldbeaddressedtotheAmericanGearManufacturersAssociation.CAUTION NOTICE: AGMAtechnicalpublicationsaresubjecttoconstantimprovement,r
6、evision,orwithdrawalasdictatedbyexperience. AnypersonwhoreferstoanyAGMAtechnical publication should be sure that the publication is the latest available from theAssociationonthesubjectmatter.Tablesorotherself-supportingsectionsmaybereferenced. Citationsshouldread: SeeANSI/AGMA 2004-C08, Gear Materia
7、ls, Heat Treatment and Processing Manual,published by the American Gear Manufacturers Association, 500 Montgomery Street,Suite350,Alexandria,Virginia 22314,http:/www.agma.org.ApprovedJanuary8,2008ABSTRACTThisstandardprovidesinformationpertainingtoferrousandnonferrousmaterialsusedingearing.Factorsinm
8、aterialselection,includingmaterialforms,properties,andassociatedprocessingandheattreatmentsarediscussed.Manufacturingprocedurestopreparematerialsformachiningandfinalheattreatmentareincluded.Heat treating procedures used for gearing are covered in detail, including process descriptions, productspecif
9、ications,processcontrols,andcharacteristicsofheattreatedgearing.Post-heattreatmentprocessestomeetgearingrequirementsarediscussed.Productinspectionmethodsanddocumentationarecovered. Termdefinitions,testmethods,distortionandresidualstress,sourcesforadditionalinformation,andabibliographyareincluded.Pub
10、lishedbyAmerican Gear Manufacturers Association500 Montgomery Street, Suite 350, Alexandria, Virginia 22314Copyright 2007byAmericanGearManufacturersAssociationAllrightsreserved.Nopartofthispublicationmaybereproducedinanyform,inanelectronicretrievalsystemorotherwise,withoutpriorwrittenpermissionofthe
11、publisher.PrintedintheUnitedStatesofAmericaISBN: 978-1-55589-904-2AmericanNationalStandardANSI/AGMA 2004-C08AMERICAN NATIONAL STANDARD AGMA2008 - Allrightsreserved iiiContentsForeword iv.1 Scope 1.2 Normativereferences 1.3 Materials 24 Manufacturing - materialpreparations 185 Heattreatingofferrousma
12、terials 21.6 Postheattreatmentprocesses - metallurgicaleffects 37.7 Inspectionandcertification 39Bibliography 67.AnnexesA Definitionofterms 45.B Testmethodsandtestcoupons 53C Distortionandresidualstress 64D Sourcesforadditionalinformation 66Tables1 CommonSAEsteeldesignationsandtheirnominalalloyconte
13、nts 9.2 Typicalheattreatmentsandassociatedsteelgrades 9.3 Maximumrecommendedcontrollingsectionsizeforoilquenchedandtemperedgearing 114 TensilerequirementsforstandardductileirongradesperASTMA536 155 TensilerequirementsforgrayironperASTMA48/A48M 16.6 ASTMA897/897MminimumpropertyspecificationsforADIcas
14、tings 177 MalleableirontensilerequirementsperASTMA47andA220 188 Chamfersizesforgearteethtobecasehardenedorsurfacehardened 20.9 Approximateminimumcorehardnessofcarburizedgearteeth 25.10 Pressureunitconversions 28.11 Approximateminimumsurfacehardness - nitridedsteels 31.12 Approximateminimumcorehardne
15、ss - nitridedsteels 31Figures1 Materialselectionfactors 22 Steelprocessingflowchart 7.3 Directionalityofforgingproperties 8.4 Casehardenabilityofcarburizinggradesofsteel 12.5 Castironprocessingflowchart 156 Vibrationcharacteristicsofsteelandcastirons 157 Gearingblankfeaturesthatincreasedistortiondur
16、ingcarburizing 268 Typicaldistortioncharacteristicsofcarburizedgearing 279 Variationsinhardeningpatternobtainableongearteethwithflameorinductionhardening 3310 Surfacehardnessversuscarboncontentfor99%martensitemicrostructure 34.ANSI/AGMA 2004-C08 AMERICAN NATIONAL STANDARD AGMA2008 - Allrightsreserve
17、divForewordThe foreword, footnotes and annexes, if any, in this document are provided forinformational purposes only and are not to be construed as a part of AGMA Standard2004-C08, Gear Materials, Heat Treatment and Processing Manual.ANSI/AGMA2004-C08providesabroadrangeofinformationongearmaterials,g
18、earheattreatment,andassociatedprocessing.Thisinformationisintendedtoassistthedesigner,the process and manufacturing engineer, and the heat treater to effectively produce thegearingrequiredfortheapplication. DatacontainedhereinrepresentsaconsensusfrommetallurgicalrepresentativesofmembercompaniesofAGM
19、A.ThegoalofANSI/AGMA2004-C08istopresentinformationinasequencethatcanbeusedto make the necessary technical decisions when producing gearing. ANSI/AGMA2004-C08 includes updated and extensively revised information from ANSI/AGMA2004-B89alongwithadditionalinformationneededtoachievethisgoal.ANSI/AGMA2004
20、-B89supersededAGMA240.01,GearMaterialsManual,October1972,becauseofaMetallurgyandMaterialsCommitteedecisiontorevisethedocumentformat.On January 23, 1989, ANSI/AGMA 2004-B89 was approved as an American NationalStandard.Thisstandardhasbeenupdatedtoreflectcurrenttechnologyintheareaofsteelmakingandheattr
21、eatment,andeditedto includecross references to relevantAGMA standards andinformationsheets.ThefirstdraftofAGMA2004-C08was completedinMay2001. ItwasapprovedbytheAGMAmembershipinOctober,2007. ItwasapprovedasanAmericanNationalStandardonJanuary8,2008.Suggestionsforimprovementofthisstandardwillbewelcome.
22、 TheyshouldbesenttotheAmericanGearManufacturersAssociation,500MontgomeryStreet,Suite350,Alexandria,Virginia 22314.ANSI/AGMA 2004-C08AMERICAN NATIONAL STANDARD AGMA2008 - Allrightsreserved vPERSONNEL of the AGMA Metallurgy and Materials CommitteeChairman: P.Terry LufkinIndustries,Inc.ViceChairman: D.
23、J.Weires BoeingDefense Forging Topics; Open Die ForgingTechnology3.2.1.1 ForgingsForging is the process of hot mechanical deforma-tion,orworking,ofasteelbilletintoaspecificformusing a set of dies. Working adds to the effectivereductionratio,andmayprovideimprovedinclusionorientation (flow lines) in t
24、he part. Total reductionratio from rolling and forging shall comply with theapplicableAGMAstandardorAGMA923-B05. SeeannexAforcalculationsofreductionratio. Typically,forgingofasteelbilletisconductedwhilethebilletisatatemperatureabove1050C. Steelforgingstockisalwaysfullykilledtominimizetheoccurrenceof
25、fis-sures during the forging process due to dissolvedgases. Forgings may reduce machining timecompared to round bars. They are available in awiderangeofsizesandgrades.Thestandardforgingclassificationsare:- Open die forging. This method produces arough dimensioned piece by mechanicaldeformation betwe
26、en an upper and lower die(hammer and anvil) in an open frame press orhammer. Thismethodmaybeusedtoimprovecentersoundnessby“drawingout”,orworking,thesideofthebillet(oringot)toproducealongerbilletwithasmallercrosssectionalarea. Centersoundness may also be improved by upsetforging,wherethebilletisworke
27、dfromtheends,resultinginashorterbilletwithincreasedcrosssectionalarea. Grainflowinthefinishedproductshouldbeconsideredtodeterminetheworkingsequencetobeused. Thismethodcanbeusedforhighspeedgearing(pitchlinevelocitygreaterthan150m/sec),whichrequiresasoundcentertoresistthehighcentrifugalstressdeveloped
28、inoperation.- Closed die forging. This method produces aclosertolerancepiece,generallysmallerthananopendieforging. Theupperandlowerdiestrapthesteelbilletinaclosed(confined)cavity,andpressactiondeformsthemetaltofillthecontourofthediecavity.- Rolled ring forging. This method produces adonut-shaped wor
29、k piece. Typically theprocess involves upsetting a billet to apancake-shaped piece with a reduced centerarea,piercingthecenterareatomakeadonut,then working the donut between internal andexternalmandrelstoformthepropersizepiece.Upper and lower mandrels are also used tocontrolheightandshapeofthefinalr
30、olledring.3.2.1.2 Round bars (barstock)Round bars for standard carbon and alloy steelgrades are available as hot rolled, hot rolled-colddrawn,hotrolled-coldfinished,andforgedrounds.Hotrolledbarsaremechanicallyworkedattemper-atures of 1150-1320C and may be subsequentlyANSI/AGMA 2004-C08 AMERICAN NATI
31、ONAL STANDARD AGMA2008 - Allrightsreserved4annealed, straightened and stress relieved. Hotrolledbarsmaybemadefromingotsorfromcontinu-ous cast steel. In either case, the reduction ratioshallcomplywiththeapplicableAGMAstandardorAGMA923-B05tosufficientlyhealtheporosityandvoids inherent in the as-cast p
32、roduct and achievemaximumproperties. SeeannexAforcalculationofreductionratio.Cold drawing produces aclosedimensionaltoler-ancebarwithimprovedmechanicalproperties(high-erhardnessandyieldstrength)overhotrolledbars.Lowtomediumcarbonsteelsarenormallyavailableascolddrawnbarforgearing.Hot rolled-cold fini
33、shed bars are machined(turned,groundandperhapspolished)forimprovedsizecontrolandsurfacecondition,butshownoim-provementinmechanicalpropertiesoverhotrolledorannealedbar.Forgedroundbarsareforgedroundunderapressorhammeratsimilartemperaturesusedforhotroll-ing (higher temperature for lower carbon contentc
34、arbonoralloysteel),andcanbemanufacturedtoasize larger than can be formed with rolling dies orrolls. Rotaryforgingmaynotproducecentersound-nessequivalenttopressforgingorhammerforging.Forgedroundbarscanbepurchasedinavarietyofheattreatconditionsdependinguponapplication.Approximate maximum diameter of t
35、he varioustypes of round bar, depending upon steel millcapacity,isasfollows:Hotrolled: 250mmColddrawn: 100mmColdfinished: 125mmForgedround: 750mm3.2.1.3 Flat or plateCommercial flat or plate steel of numerous carbonandalloygradesisavailableinstandardthicknessesandinawiderangeofwidthsandlengths. Flat
36、stockis typically available in hot rolled or hot rolled andannealedconditions.3.2.1.4 BlankingBlanking is a process accomplished using eitherflame,laser,electrodischargemachining(EDM),orwater jetting to cut a shape from plate. Simpleshapesoflowtomediumqualitycanbeproducedineither ferrous or nonferro
37、us alloys. Flame cuttingandwaterjettingarecosteffectiveforsimple,ferrousshapes of larger size. Laser and EDM techniquescan produce blanks of higher quality, but at highercost. Alaseriscapableofproducingsmallorlargeparts. EDMistypicallyusedforsmallerpartsandishighlyaccurate.3.2.1.5 StampingStampingis
38、alowcostprocesssuitableformakingreasonably accurate, thin, small, flat gears for lowspeed,lowloadapplications. Diecostisreasonablylow, and this process can be used on ferrous andnonferrousmetals. Thisprocesswouldbesatisfac-tory for producing low, medium, and high volumegears. It produces a sheared e
39、dge that requiresmachiningorfinishing.3.2.1.6 FineblankingFineblankingisamoderatecostprocess,similartostamping,suitableformakingsmall,flatgearsuptoaround 15 mm thickness. The tooling for this pro-cess is relatively expensive, limitingthe process torelatively high volume production. However, thisproc
40、ess produces blanks that are more accuratethanstampings. Fineblankingrequiresminimaldraftandcanbeusedforeitherferrousornonferrousmet-als.3.2.1.7 ExtrusionRoundstock extrusionisaprocessthatproducesabarofuniform,roundcrosssectionthatissubse-quentlyprecisionsawedormachinedtothedesiredfacewidth. Itcanbe
41、usedforferrousandnonferrousalloys. The die and capital equipment costs aremoderate. Extruded material is usually purchasedfromaproduceras“barstock”. Extrusionissuitableformakinggearsofanyqualitylevelinlow,mediumand high volumes. Extruded product requiressubsequentmachiningtothefinalconfiguration.Sha
42、pedstockextrusionisaprocessthatproducesauniformbarwiththetoothconfigurationontheout-sidediameter,suitableforlowspeedgearing. Thebarissubsequentlyprecisionsawedormachinedofftothedesiredfacewidth. Thespecializeddiecostishigh, limiting this process to medium and high vol-ume applications. The process r
43、equires no draft.Thisprocesscanbeusedfornonferrousmetals.3.2.2 CastingCasting processes encompass a wide array of al-loys,finishtolerances,sizesandproductionquanti-ties. Metal casting allows the designer to produceuniqueengineeringshapesthatwouldbedifficultorimpossibletomachinefromablank.Additionali
44、nformationforcaststeelisavailablein:ANSI/AGMA 2004-C08AMERICAN NATIONAL STANDARD AGMA2008 - Allrightsreserved 5Steel Castings Handbook, 6th Edition, SteelFoundersSocietyofAmerica(SFSA)ASMHandbook,Volume15, Casting3.2.2.1 Sand castingSandmolding,themostwidelyusedandlowestcostcastingprocess,employsabo
45、ndedsand(eitherclayandwaterorachemicalbindersystem)tocreateamoldcavityfromapatternthatreplicatestheexteriorofthepart. Coresareusedtoproduceanyinternalcavities. Boththemoldandthecorerequire1to2degrees of draft on surfaces perpendicular to theirrespectivepartinglines. This isaprocesssuitableforlow,med
46、iumorhighvolumeproductionandcanbeusedforvirtuallyanyshapeorsizepart. Bysometechniques, it may be a near net shape process.Casting is a widely used process for coarse, lowspeedgearingtohighqualitygears.3.2.2.2 Lost foam castingLostfoamisanearnetshapeprocesswhichutilizesanexpendablepolymerfoampatternt
47、hatiscoatedandinvestedindrysand. Whenthemetalentersthemold,thefoamevaporates,andthemetalassumestheshapeofthepatternitdisplaced. Lostfoamfallsbetween sand molding and investment casting incost and dimensional accuracy. It requires slightdraft on surfaces perpendicular to the die parting.Thetoolingfor
48、 this process is relatively expensive,thus limitingittomedium andhigh volumeproduc-tion. Thedimensionalaccuracyallowstheelimina-tion of some machining operations, offsetting theincreased cost. Low speed coarse gears can beusedwithas-castsurfaces. Gearsofhigherqualityorloadcapacityrequiremachining.3.
49、2.2.3 Investment castingInvestmentcastinghasbeenknownthroughouthis-toryasthe“lostwaxprocess”. Thisprocessrequirestheproductionofadetailedwax patternofthepartthatisthencoatedwithceramicslurrytoproduceaceramic mold that duplicates the shape of the pat-tern. Thewaxisremovedbeforemetalispouredintothemold. Anewpatternandmoldarecreatedanddestroyed with each casting. It is a relatively highcostcastingprocess,butproducespartsofnearnetshape. Onlyminordraftisrequired. Itcanbeusedfor a wide range of ferrous and nonferrous alloys,and