1、Designation: F2922 131Standard Specification forPolyethylene (PE) Corrugated Wall Stormwater CollectionChambers1This standard is issued under the fixed designation F2922; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of
2、last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1NOTE5.3.8 and 5.3.9 were editorially corrected in December 2013.1. Scope*1.1 This specification covers requirements, test methods
3、,materials, and marking for polyethylene (PE), open bottom,buried arch-shaped chambers of corrugated wall constructionused for collection, detention, and retention of stormwaterrunoff. Applications include commercial, residential,agricultural, and highway drainage, including installation un-der park
4、ing lots and roadways.1.2 Chambers are produced in arch shapes with dimensionsbased on chamber rise, chamber span, and wall stiffness.Chambers are manufactured with integral feet that provide basesupport. Chambers may include perforations to enhance waterflow. Chambers must meet test requirements fo
5、r arch stiffness,flattening, and accelerated weathering.1.3 Analysis and experience have shown that the successfulperformance of this product depends upon the type and depthof bedding and backfill, and care in installation. This specifi-cation includes requirements for the manufacturer to providecha
6、mber installation instructions to the purchaser.1.4 The values stated in inch-pound units are to be regardedas standard. The values given in parentheses are mathematicalconversions to SI units that are provided for information onlyand are not considered standard.1.5 The following safety hazards cave
7、at pertains only to thetest method portion, Section 6, of this specification:Thisstandard does not purport to address all of the safety concerns,if any, associated with its use. It is the responsibility of the userof this standard to establish appropriate safety and healthpractices and determine the
8、 applicability of regulatory limita-tions prior to use.2. Referenced Documents2.1 ASTM Standards:2D618 Practice for Conditioning Plastics for TestingD1600 Terminology forAbbreviated Terms Relating to Plas-ticsD2122 Test Method for Determining Dimensions of Ther-moplastic Pipe and FittingsD2412 Test
9、Method for Determination of External LoadingCharacteristics of Plastic Pipe by Parallel-Plate LoadingD2990 Test Methods for Tensile, Compressive, and FlexuralCreep and Creep-Rupture of PlasticsD3350 Specification for Polyethylene Plastics Pipe and Fit-tings MaterialsD4329 Practice for Fluorescent Ul
10、traviolet (UV) Lamp Ap-paratus Exposure of PlasticsD4703 Practice for Compression Molding ThermoplasticMaterials into Test Specimens, Plaques, or SheetsD6992 Test Method for Accelerated Tensile Creep andCreep-Rupture of Geosynthetic Materials Based on Time-Temperature Superposition Using the Stepped
11、 IsothermalMethodF412 Terminology Relating to Plastic Piping SystemsF2136 Test Method for Notched, Constant Ligament-Stress(NCLS) Test to Determine Slow-Crack-Growth Resis-tance of HDPE Resins or HDPE Corrugated PipeF2787 Practice for Structural Design of Thermoplastic Cor-rugated Wall Stormwater Co
12、llection Chambers3. Terminology3.1 DefinitionsDefinitions used in this specification are inaccordance with the definitions in Terminology F412, andabbreviations are in accordance with Terminology D1600,unless otherwise indicated.3.2 Definitions of Terms Specific to This Standard:3.2.1 chamberan arch
13、-shaped structure manufactured ofthermoplastic with an open-bottom that is supported on feet1This specification is under the jurisdiction of ASTM Committee F17 on PlasticPiping Systems and is the direct responsibility of Subcommittee F17.65 on LandDrainage.Current edition approved Nov. 1, 2013. Publ
14、ished December 2013. Originallyapproved in 2012. Last previous edition approved in 2012 as F2922-121. DOI:10.1520/F292213E01.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information,
15、refer to the standards Document Summary page onthe ASTM website.*A Summary of Changes section appears at the end of this standardCopyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States1and may be joined into rows that begin with, and are term
16、i-nated by, end caps (see Fig. 1).3.2.2 chamber storage capacitythe bare chamber storagecapacity excluding storage in end caps, stone porosity, distri-bution piping or other distribution components.3.2.3 corrugated walla wall profile consisting of a regularpattern of alternating crests and valleys (
17、see Fig. 2).3.2.4 crestthe element of a corrugation located at theexterior surface of the chamber wall, spanning between twoweb elements (see Fig. 2).3.2.5 crownthe center section of a chamber typicallylocated at the highest point as the chamber is traversedcircumferentially.3.2.6 end capa bulkhead
18、provided to begin and terminatea chamber, or row of chambers, and prevent intrusion ofsurrounding embedment materials.3.2.7 foota flat, turned out section that is manufacturedwith the chamber to provide a bearing surface for transfer ofvertical loads to the bedding (see Fig. 1).3.2.8 inspection port
19、an opening in the chamber wall thatallows access to the chamber interior.3.2.9 nominal heighta designation describing the approxi-mate vertical dimension of the chamber at its crown (see Fig.1).3.2.10 nominal widtha designation describing the ap-proximate outside horizontal dimension of the chamber
20、at itsfeet (see Fig. 1).3.2.11 periodthe length of a single repetition of therepeated corrugation, defined as the distance from the center-line of a valley element to the centerline of the next valleyelement (see Fig. 2).3.2.12 risethe vertical distance from the chamber base(bottom of the chamber fo
21、ot) to the inside of a chamber wallvalley element at the crown as depicted in Fig. 1.3.2.13 spanthe horizontal distance from the interior ofone sidewall valley element to the interior of the other sidewallvalley element as depicted in Fig. 1.3.2.14 valleythe element of a corrugated wall located atth
22、e interior surface of the chamber wall, spanning between twowebs (see Fig. 2).3.2.15 webthe element of a corrugated wall that connectsa crest element to a valley element (see Fig. 2).4. Materials and Manufacture4.1 The chamber and end caps shall be made of virgin PEplastic compound meeting the requi
23、rements of SpecificationD3350 cell classification 516500C or 516500E, except that thecarbon black content shall not exceed 3%. Compounds thathave a higher cell classification in one or more properties shallbe permitted provided all other product requirements are met.For slow crack growth resistance,
24、 acceptance of resins shall bedetermined by using the notched constant ligament-stress(NCLS) test on a finished compounded resin according to theprocedure described in 6.2.11. The chamber sample shall beground and a test plaque made in accordance with PracticeD4703 Procedure C at a cooling rate of 2
25、7F/min (15C/min)and tested per 6.2.11. The average failure time of test speci-mens from plaques shall not be less than 100 h.4.2 Rework MaterialIn lieu of virgin PE, clean reworkmaterial generated from the manufacturers own chambers maybe used, provided the material meets the cell class require-ment
26、s of 4.1.5. Requirements5.1 Chamber Description:5.1.1 Chambers shall be produced in arch shapes symmetricabout the crown with corrugated wall and integral or attachedfeet for base support (see Fig. 1). Any arch shape is acceptableprovided all the requirements of this specification are met.NOTE 1For
27、purposes of structural optimization, the wall geometry(for example, corrugation height, crest width, valley width, and web pitch)may vary around the chamber circumference.5.1.2 Chambers shall be produced with maximum span atthe base of the chamber (bottom of the chamber foot).The model chamber shown
28、 in this standard is intended only as a general illustration. Any arch-shape chamber configuration is permitted, as long as it meets all thespecified requirements of this standard.FIG. 1 Model ChamberF2922 13125.1.3 Chambers may include access ports for inspection orcleanout. Chambers with access po
29、rts shall meet the require-ments of this standard with access ports open and closed.5.1.4 Chambers may include provisions for hydraulic con-nections at various locations around the chamber. Chamberswith hydraulic connections through the chamber shall meet therequirements of this standard with hydrau
30、lic connections (1)closed and (2) with the hydraulic connection fitting installed.5.1.5 Chambers may include perforations. Perforations shallbe cleanly fabricated in a size, shape, and pattern determinedby the manufacturer. Chambers with perforations shall meetthe requirements of this standard.5.1.6
31、 Chambers may include integral, repeating end walls.Chambers with integral repeating end walls shall meet therequirements of this standard at all locations along the chamberlength. The chamber shall be capable of carrying the full loadfor which it was designed at all locations along the chamberlengt
32、h.5.1.7 Chamber sections shall be manufactured to connect atthe ends to provide rows of various lengths. Joints shall beconfigured to prevent intrusion of the surrounding embedmentmaterial and shall be capable of carrying the full load for whichthe chamber is designed.5.1.8 Each row of chambers shal
33、l begin and terminate withan end cap. End caps may be an integral part of the chamber ora separate component. End caps that are injection molded shallmeet the requirements of this standard.5.1.9 Chamber classifications, dimensions, and tolerancesare provided in Table 1. Chamber classifications are b
34、ased onthe nominal height and nominal width of the chambers, asillustrated in Fig. 1. Classifications shall be manufactured withthe specified rise and span with tolerances, minimum footwidth, and wall thickness requirements.NOTE 2The values for arch stiffness in Table 1 should not beconsidered compa
35、rable to values of pipe stiffness.5.2 WorkmanshipThe chambers shall be homogeneousthroughout and essentially uniform in color, opacity, density,and other properties. The interior and exterior surfaces shall befree of chalking, sticky, or tacky material. The chamber wallsshall be free of cracks, blis
36、ters, voids, foreign inclusions, orother defects that are visible to the naked eye and may affectthe wall integrity.5.3 Physical and Mechanical Properties of Finished Cham-ber:5.3.1 Wall ThicknessChambers shall have minimum andaverage wall thicknesses not less than the wall thicknessesshown in Table
37、 1 when measured in accordance with 6.2.1.5.3.2 Minimum Foot WidthChambers shall have a footwidth not less than the minimum foot width as shown in Table1 when measured in accordance with 6.2.2 (see also Fig. 1).5.3.3 Rise and Span DimensionsChambers shall meetthe rise and span dimension requirements
38、 shown in Table 1when measured in accordance with Sections 6.2.3 and 6.2.4(see also Fig. 1).5.3.4 Deviation From StraightnessThe chamber and itssupport feet shall not have a deviation from straightness greaterthan L/100, where L is the length of an individual chamber,when measured in accordance with
39、 6.2.5.NOTE 3This check is to be made at the time of manufacture and isincluded to prevent pre-installation deformations in a chamber that meetsall other requirements of this standard.The corrugation profile shown in this standard is intended only as a general illustration. Any corrugation pattern i
40、s permitted, as long as it meets all the specified testrequirements of this standard.FIG. 2 Model Corrugated WallTABLE 1 Chamber Classifications, Dimensions, and TolerancesChamberClassificationNominalHeightNominalWidthRise SpanMinimumFootWidthWallThicknessMinimumArchStiffnessConstantAverage Toleranc
41、eAverage ToleranceAverage Minimumin.(mm)in.(mm)in.(mm)in.(mm)in.(mm)in.(mm)in.(mm)in.(mm)in.(mm)lb/ft/%1633 16(406)33(838)13.5(343)1.0(25)25.0(635)1.0(25)4.0(100)0.130(3.3)0.120(3.0)3003051 30(762)51(1295)27.0(686)1.0(25)44.0(1118)1.1(28)4.0(100)0.180(4.6)0.165(4.2)300F2922 13135.3.5 Storage Capacit
42、yManufacturers shall provide thestorage capacity of the bare chamber and end cap and a stagestorage table for the chamber and end cap. Reported valuesshall be based on components “as-assembled” to eliminatedouble counting storage at joints and end caps. Volumedetermination shall be in accordance wit
43、h 6.2.6.5.3.6 Creep Rupture StrengthSpecimens fabricated in thesame manner and composed of the same materials including alladditives, as the finished chambers shall have a 50 year creeprupture tensile strength at 73 F (23C) not less than 700 psi(4.8 MPa) when determined in accordance with 6.2.7.5.3.
44、7 Creep ModulusSpecimens fabricated in the samemanner and composed of the same materials including alladditives, as the finished chambers shall have a 50 year tensilecreep modulus at 73 F (23C) of not less than 20,000 psi (138MPa) when tested at a stress level of 500 psi (3.5 MPa) or thedesign servi
45、ce stress, whichever is greater. The creep modulusshall be determined in accordance with 6.2.8. The actual testderived creep modulus shall be used in the design of thechamber.NOTE 4The specified minimum modulus provides assurance oflong-term stiffness for a chamber resin. It does not provide assuran
46、ce thatall chambers manufactured with a resin of this stiffness will be adequatefor all long-term load conditions. Structural calculations to demonstrateadequacy are still required in accordance with 5.5 and 5.6.2.NOTE 5The 50 year creep rupture strength and 50 year creep modulusvalues, determined b
47、y the test methods in 6.2.7 and 6.2.8, are used todefine the slope of the logarithmic regression curves to describe therequired material properties sampled from the product. They are not to beinterpreted as service life limits.5.3.8 Arch Stiffness ConstantChambers shall have an archstiffness constan
48、t (ASC) not less than the minimum archstiffness constant shown in Table 1 when determined inaccordance with 6.2.9.5.3.9 FlatteningChambers shall show neither splitting,cracking, or breaking under normal light and the unaided eyenor loss of load carrying capacity when tested in accordancewith 6.2.10.
49、5.3.10 Slow Crack Growth Resistancecompressionmolded samples from the finished chamber shall exhibit anaverage failure time of not less than 100 hrs when tested forslow crack growth resistance in accordance with 6.2.11.5.4 Accelerated WeatheringSpecimens fabricated in thesame manner and composed of the same materials as thefinished chambers shall meet all material requirements in 4.2after accelerated weathering described in 4.1.5.5 Design and Installation RequirementsChambers shallbe structurally designed in accordance with Pract