ASTM D1894-2011 Standard Test Method for Static and Kinetic Coefficients of Friction of Plastic Film and Sheeting《塑料薄膜和薄板静态和动态摩擦系数的标准试验方法》.pdf

上传人:deputyduring120 文档编号:510643 上传时间:2018-12-01 格式:PDF 页数:7 大小:108.68KB
下载 相关 举报
ASTM D1894-2011 Standard Test Method for Static and Kinetic Coefficients of Friction of Plastic Film and Sheeting《塑料薄膜和薄板静态和动态摩擦系数的标准试验方法》.pdf_第1页
第1页 / 共7页
ASTM D1894-2011 Standard Test Method for Static and Kinetic Coefficients of Friction of Plastic Film and Sheeting《塑料薄膜和薄板静态和动态摩擦系数的标准试验方法》.pdf_第2页
第2页 / 共7页
ASTM D1894-2011 Standard Test Method for Static and Kinetic Coefficients of Friction of Plastic Film and Sheeting《塑料薄膜和薄板静态和动态摩擦系数的标准试验方法》.pdf_第3页
第3页 / 共7页
ASTM D1894-2011 Standard Test Method for Static and Kinetic Coefficients of Friction of Plastic Film and Sheeting《塑料薄膜和薄板静态和动态摩擦系数的标准试验方法》.pdf_第4页
第4页 / 共7页
ASTM D1894-2011 Standard Test Method for Static and Kinetic Coefficients of Friction of Plastic Film and Sheeting《塑料薄膜和薄板静态和动态摩擦系数的标准试验方法》.pdf_第5页
第5页 / 共7页
亲,该文档总共7页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、Designation: D1894 11Standard Test Method forStatic and Kinetic Coefficients of Friction of Plastic Film andSheeting1This standard is issued under the fixed designation D1894; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the yea

2、r of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the Department of Defense.1. Scope*1.1 This test method covers determi

3、nation of the coefficientsof starting and sliding friction of plastic film and sheeting whensliding over itself or other substances at specified test condi-tions. The procedure permits the use of a stationary sled witha moving plane, or a moving sled with a stationary plane. Bothprocedures yield the

4、 same coefficients of friction values for agiven sample.NOTE 1For the frictional characteristics of plastic films partiallywrapped around a cylinder, or capstan, see Test Method G143 under thejurisdiction of ASTM Subcommittee G02.50.1.2 Test data obtained by this test method is relevant andappropria

5、te for use in engineering design.1.2.1 As an option to this test, coefficient of friction may berun at temperatures other than 23C by heating only the planewhile the sled is at ambient temperature.1.3 The values stated in SI units are to be regarded asstandard. The values given in parentheses are fo

6、r informationonly.1.4 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to u

7、se. For a specificprecautionary statement, see the end of 6.5.NOTE 2This test method is not equivalent to ISO 82951995, andresults cannot be directly compared between the two methods.2. Referenced Documents2.1 ASTM Standards:2D618 Practice for Conditioning Plastics for TestingD883 Terminology Relati

8、ng to PlasticsD1894 Test Method for Static and Kinetic Coefficients ofFriction of Plastic Film and SheetingD3574 Test Methods for Flexible Cellular MaterialsSlab,Bonded, and Molded Urethane FoamsD4000 Classification System for Specifying Plastic Materi-alsE177 Practice for Use of the Terms Precision

9、 and Bias inASTM Test MethodsE691 Practice for Conducting an Interlaboratory Study toDetermine the Precision of a Test MethodG143 Test Method for Measurement of Web/Roller FrictionCharacteristics2.2 ISO Standard:ISO 8295199533. Terminology3.1 Definitions:3.1.1 friction, nresistance to relative motio

10、n between twobodies in contact.3.1.1.1 coeffcient of frictionthe ratio of the force requiredto move one surface over another to the total force appliednormal to those surfaces.3.1.1.2 kinetic coeffcient of frictionthe ratio of the forcerequired to move one surface over another to the total forceappl

11、ied normal to those surfaces, once that motion is inprogress.3.1.1.3 static coeffcient of frictionthe ratio of the forcerequired to move one surface over another to the total forceapplied normal to those surfaces, at the instant motion starts.3.2 Definitions of Terms Specific to This Standard:3.2.1

12、slipin plastic films, lubricity of two surfaces slidingin contact with each other.4. Significance and Use4.1 Measurements of frictional properties may be made on afilm or sheeting specimen when sliding over itself or overanother substance. The coefficients of friction are related to theslip properti

13、es of plastic films that are of wide interest in1This test method is under the jurisdiction of ASTM Committee D20 on Plasticsand is the direct responsibility of Subcommittee D20.19 on Molded and ExtrudedProducts.Current edition approved Sept. 1, 2011. Published September 2011. Originallyapproved in

14、1961. Last previous edition approved in 2008 as D1894 - 08. DOI:10.1520/D1894-11.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page

15、 onthe ASTM website.3Available from American National Standards Institute (ANSI), 25 W. 43rd St.,4th Floor, New York, NY 10036, http:/www.ansi.org.1*A Summary of Changes section appears at the end of this standard.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, P

16、A 19428-2959, United States.packaging applications. These methods yield empirical data forcontrol purposes in film production. Correlation of test resultswith actual performance can usually be established.4.1.1 This test method includes testing at temperatures otherthan 23C by heating only the plane

17、 while the sled is at ambienttemperature.4.2 Slip properties are generated by additives in someplastic films, for example, polyethylene. These additives havevarying degrees of compatibility with the film matrix. Some ofthem bloom, or exude to the surface, lubricating it and makingit more slippery. B

18、ecause this blooming action may not alwaysbe uniform on all areas of the film surface, values from thesetests may be limited in reproducibility.4.3 The frictional properties of plastic film and sheetingmay be dependent on the uniformity of the rate of motionbetween the two surfaces. Care should be e

19、xercised to ensurethat the rate of motion of the equipment is as carefullycontrolled as possible.4.4 Data obtained by these procedures may be extremelysensitive to the age of the film or sheet and the condition of thesurfaces. The blooming action of many slip additives istime-dependent. For this rea

20、son, it is sometimes meaningless tocompare slip and friction properties of films or sheets producedat different times, unless it is desired to study this effect.4.5 Frictional and slip properties of plastic film and sheetingare based on measurements of surface phenomena. Whereproducts have been made

21、 by different processes, or even ondifferent machines by the same process, their surfaces may bedependent on the equipment or its running conditions. Suchfactors must be weighed in evaluating data from these meth-ods.4.6 The measurement of the static coefficient of friction ishighly dependent on the

22、 rate of loading and on the amount ofblocking occurring between the loaded sled and the platformdue to variation in time before motion is initiated.4.7 Care should be exercised to make certain that the speedof response of the recorder, either electronic or mechanical, isnot exceeded.4.8 For many mat

23、erials, there may be a specification thatrequires the use of this test method, but with some proceduralmodifications that take precedence when adhering to thespecification. Therefore, it is advisable to refer to that materialspecification before using this test method. Table 1 of Classi-fication Sys

24、tem D4000 lists the ASTM materials standards thatcurrently exist.5. Apparatus5.1 SledA metal block 63.5-mm (212-in.) square by ap-proximately 6-mm (0.25-in.) thick with a suitable eye screwfastened in one end. When a flexible film (see 6.2)istobeattached, the block shall be wrapped with a sponge rub

25、ber 63.5mm (212 in.) in width and 3.2 mm (18 in.) in thickness. Thefoam shall be flexible, smooth-faced, and have a nominaldensity of 0.25 g/cm3when measured in accordance with theDensity Test of Methods D3574. The pressure required tocompress the foam 25 % shall be 85 6 15 kPa (12.5 6 2.5 psi).The

26、foam shall also have a high hysteresis when deformed.4,5The rubber shall be wrapped snugly around the sled and heldin place against the bottom and top of the sled with double-faced masking tape. When a sheet (see 6.3) is to be attached,double-faced tape shall be used to attach the specimen. Thetotal

27、 weight of the (wrapped) sled and specimen shall be 200 65g.NOTE 3Round-robin testing6has shown that the physical propertiesof the backing can drastically affect both the coefficient of friction andstick-slip behavior of the film.5.2 PlaneA polished plastic, wood, or metal sheet,7ap-proximately 150

28、by 300 by 1 mm (6 by 12 by 0.040 in.). Asmooth, flat piece of glass may cover the upper surface of theplane. This provides a smooth support for the specimen.5.2.1 When it is desirable to run tests at temperatures above23C, a heating unit shall be provided that is capable ofmaintaining the temperatur

29、e of the plane within 62C of thedesired temperature. The temperature should be maintainedwithin 62C of the desired temperature over the entire traverseof the sled (that is, over the full surface of the plane).NOTE 4If the equipment has a plane with a heater, a cover may beused to help maintain the t

30、emperature of the plane within 62C of thedesired temperature.5.3 Scissors or Cutter, suitable for cutting specimens to thedesired dimensions.5.4 Adhesive Tape, cellophane or pressure-sensitive.5.5 Adhesive Tape, double-faced.5.6 Nylon Monofilament, having a 0.33 6 0.05-mm (0.0136 0.002-in.) diameter

31、 and capable of supporting a 3.6-kg (8-lb)load.5.7 Beaded Chain, flexible metal cable, or equivalent,having a spring rate no less than 600 lbs per inch of stretch perinch of length (40 lbs/in. (7000 N/m) for a 15-in. chain) in therange of 50 to 150 g of tension (such as beaded lampswitch pullchain).

32、5.8 Low-Friction PulleysA phenolic type pulley mountedin hardened steel cone bearings on a metal fork. A ball-bearingtype pulley may also be used.5.9 Force-Measuring Device, capable of measuring thefrictional force to 65 % of its value. A spring gauge8,5(seeNote 5), universal testing machine, or str

33、ain gauge may beused.NOTE 5The capacity of the spring gauge (Fig. 1(a and b) needed willdepend upon the range of values to be measured. For most plastic, a 500-gcapacity gauge with 10-g or smaller subdivisions will be satisfactory. Thisspring will measure coefficients of friction up to and including

34、 2.5.4The sole source of supply of sheet stock known to the committee at this timeis Greene Rubber Co., 59 Broadway, North Haven, CT 06473.5If you are aware of alternative suppliers, please provide this information toASTM International Headquarters. Your comments will receive careful consider-ation

35、at a meeting of the responsible technical committee,1which you may attend.6Supporting data are available from ASTM Headquarters. Request RR:D20-1065.7Acrylic or rigid poly(vinyl chloride) sheeting has been found satisfactory forthis purpose.8The sole source of supply of the Model L-500 known to the

36、committee at thistime is Hunter Spring Co., Lansdale, PA.D1894 1125.10 Supporting BaseA smooth wood or metal baseapproximately 200 by 380 mm (8 by 15 in.) is necessary tosupport the plane. The supporting base may be a simplerectangular box. If a universal testing machine is used to pulla moving plan

37、e, a supporting base of sufficient structuralstrength and rigidity to maintain a firm position between themoving crosshead and the force-measuring device will benecessary.5.11 Driving or Pulling Device for Sled or PlaneTheplane may be pulled by a driven pair of rubber-coated rolls notless than 200 m

38、m (8 in.) long, capable of maintaining auniform surface speed 150 6 30 mm/min (0.5 6 0.1 ft/min)(Fig. 1(b), by the crosshead of a universal testing machine(Fig. 1(d) (see Note 6), or a worm drive driven with asynchronous motor (Fig. 1(e). A constant-speed chain drivesystem has also been found satisf

39、actory (Fig. 1(a). A power-operated source may be used for pulling the sled over thehorizontally-mounted specimen at a uniform speed of 150 630 mm/min (0.5 6 0.1 ft/min). A universal testing machineequipped with a load cell in its upper crosshead and a constantrate-of-motion lower crosshead has been

40、 found satisfactory(see Fig. 1(c).NOTE 6Where the moving crosshead of a universal testing machine isused to pull the moving plane through a pulley system (Fig. 1(d), thestrain gauge load cell, or other load-sensing instrument in the testingmachine, acts as the force-measuring device.6. Test Specimen

41、s6.1 The test specimen that is to be attached to the plane shallbe cut approximately 250 mm (10 in.) in the machine directionand 130 mm (5 in.) in the transverse direction when suchextrusion directions exist and are identifiable.6.2 Afilm specimen that is to be attached to the sled shall becut appro

42、ximately 120-mm (412-in.) square. Film is defined assheeting having a nominal thickness of not greater than 0.254mm as indicated in Terminology D883.A. Sled H. Constant-speed drive rollsB. Plane I. Nylon monofilamentC. Supporting base J. Low-friction pulleyD. Gauge K. Worm screwE. Spring gauge L. Ha

43、lf nutF. Constant-speed chain drive M. Hysteresis, synchronous motorG. Constant-speed tensile tester crossheadFIG. 1 Five Methods of Assembly of Apparatus for Determination of Coefficients of Friction of Plastic FilmD1894 1136.3 A sheeting specimen (greater than 0.254 mm nominalthickness) or another

44、 substance that is to be attached to the sledshall be cut 63.5 mm (212 in.) square.6.4 Sheeting specimens shall be flat and free of warpage.Edges of specimens shall be rounded smooth.6.5 Five specimens shall be tested for each sample unlessotherwise specified. (WarningExtreme care is needed inhandli

45、ng the specimens. Contamination of the test surface bydust, lint, finger prints, or any foreign matter may change thesurface characteristics of the specimens.)NOTE 7Plastic films and sheeting may exhibit different frictionalproperties in their respective principal directions due to anisotropy orextr

46、usion effects. Specimens may be tested with their long dimension ineither the machine or transverse direction of the sample, but it is morecommon practice to test the specimen as described in 6.1 with its longdimension parallel to the machine direction.7. Preparation of Apparatus7.1 Fig. 1 shows fiv

47、e ways in which the apparatus may beassembled. The support bases for all apparatus assemblies shallbe level.7.2 If the apparatus of Fig. 1(a)or(b) is used, calibrate thescale of the spring gauge as follows:7.2.1 Mount the low-friction pulley in front of the springgauge.7.2.2 Fasten one end of the ny

48、lon filament to the springgauge, bring the filament over the pulley, and suspend a knownweight on the lower end of the filament to act downward.NOTE 8The reading on the scale shall correspond to the knownweight within 65 %. The weight used for this calibration shall be between50 and 75 % of the scal

49、e range on the gauge.7.3 The drive speed for the apparatus of Fig. 1(a and b) shallbe adjusted to 150 6 30 mm/min (6.0 6 1.2 in./min). Thisspeed may be checked by marking off a 150-mm (6.0 in.)section beside the plane and determining the time required forthe plane to travel 150 mm.7.4 If the apparatus of Fig. 1(c and d) employing a universaltesting machine is used, select the proper speed setting for acrosshead motion of 150 6 30 mm/min (6.0 6 1.2 in./min). Asimilar speed for the load-displacement recorder is desirable.However, the speed o

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 标准规范 > 国际标准 > ASTM

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1