ASTM D5709-2009 9375 Standard Test Method for Sieve Analysis of Petroleum Coke《焦油筛析的标准试验方法》.pdf

上传人:Iclinic170 文档编号:520490 上传时间:2018-12-03 格式:PDF 页数:4 大小:82.29KB
下载 相关 举报
ASTM D5709-2009 9375 Standard Test Method for Sieve Analysis of Petroleum Coke《焦油筛析的标准试验方法》.pdf_第1页
第1页 / 共4页
ASTM D5709-2009 9375 Standard Test Method for Sieve Analysis of Petroleum Coke《焦油筛析的标准试验方法》.pdf_第2页
第2页 / 共4页
ASTM D5709-2009 9375 Standard Test Method for Sieve Analysis of Petroleum Coke《焦油筛析的标准试验方法》.pdf_第3页
第3页 / 共4页
ASTM D5709-2009 9375 Standard Test Method for Sieve Analysis of Petroleum Coke《焦油筛析的标准试验方法》.pdf_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、Designation: D5709 09Standard Test Method forSieve Analysis of Petroleum Coke1This standard is issued under the fixed designation D5709; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revision. A number in parenth

2、eses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope*1.1 This test method details a procedure for performingparticle size distribution analysis by dry sieve testing on greenpetroleum coke with a topsize of no

3、 more than 75 mm andcalcined petroleum coke with a topsize of no more than 25 mm.Size fractions go down to and include 4.75 mm for greenpetroleum coke and 75 m for calcined petroleum coke.NOTE 1To convert units, see Table 1 on nominal dimensions inSpecification E11. For example, 75 mm is approximate

4、ly equivalent to anominal sieve opening of 3 in. and 25 mm to a nominal sieve opening of1 in. Likewise, 4.75 mm can be converted to approximately 0.187 in. and75 microns to 0.0029 in.1.2 The values stated in SI units are to be regarded asstandard. No other units of measurement are included in thisst

5、andard.1.2.1 The sieve size is reported as U.S.A. standard testseries in any units listed in Table 1 on nominal dimensions ofSpecification E11, or their commercial size equivalents.1.3 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresp

6、onsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2D346 Practice for Collection and Preparation of CokeSamples for Laboratory AnalysisD2013 Pr

7、actice for Preparing Coal Samples for AnalysisD2234/D2234M Practice for Collection of a Gross Sampleof CoalD4057 Practice for Manual Sampling of Petroleum andPetroleum ProductsD4749 Test Method for Performing the Sieve Analysis ofCoal and Designating Coal SizeE11 Specification for Woven Wire Test Si

8、eve Cloth and TestSieves3. Terminology3.1 Definitions of Terms Specific to This Standard:3.1.1 bulk sample, nthe reduced and divided representa-tive portion of the gross sample as prepared for shipment to andreceived by a laboratory, to be prepared for analysis.3.1.2 gross sample, nthe original, unc

9、rushed, representa-tive portion taken from a shipment or lot of coke.3.1.3 lot, na quantity of coke to be represented by a grosssample.3.1.4 representative sample, na sample collected in such amanner that every particle in the lot to be sampled is equallyrepresented in the gross sample.3.1.5 topsize

10、, nthe size of the smallest opening of onesieve of a series upon which is cumulatively retained a total ofless than 5 % of the sample. This defined topsize is not to beconfused with the size of the largest particle in a lot.4. Summary of Test Method4.1 A representative coke sample is divided into ra

11、nges ofparticle size by the use of a series of square-holed sieves.5. Significance and Use5.1 The test method concerns the sieving of coke intodesignated size fractions for the purpose of characterizing thematerial as to its particle size distribution. It requires the use ofstandard sieves, standard

12、 sampling methods, standard samplepreparation methods, and a minimum initial sample mass basedon lot topsize. Suggestions are given for industry typical sievestacks for both green and calcined petroleum coke.5.2 Particle size distribution is significant in that manyphysical characteristics of a coke

13、 are related to such adistribution including bulk density and surface area. Nuisancecharacteristics, such as excessive fines in a lot, can also becontrolled.1This test method is under the jurisdiction of ASTM Committee D02 onPetroleum Products and Lubricants and is the direct responsibility of Subco

14、mmitteeD02.05 on Properties of Fuels, Petroleum Coke and Carbon Material.Current edition approved Dec. 1, 2009. Published February 2010. Originallyapproved in 1995. Last previous edition approved in 2005 as D570995(2005).DOI: 10.1520/D5709-09.2For referenced ASTM standards, visit the ASTM website, w

15、ww.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.1*A Summary of Changes section appears at the end of this standard.Copyright ASTM International, 100 Barr Harbor Drive

16、, PO Box C700, West Conshohocken, PA 19428-2959, United States.5.3 Results from this test method are useful in determiningwhether a coke lot meets purchase specifications, for classifi-cation purposes, and for quality control. The results of this testmethod can also be used to predict the performanc

17、e of aparticular lot of coke in a process.6. Interferences6.1 A sieve analysis is very sensitive to the sieve cloth andsieve cloth-frame integrity. Minor separations of the sieve clothfrom the frame such as one broken sieve wire, and slightdistortions of sieve wires, can cause serious inaccuracies i

18、n thefinal results of a sieve analysis.6.2 Blinding of or a reduction in the number of openings ina sieve due to a collection of particles caught in the mesh canintroduce errors.6.3 Flooding or overloading of any sieve with particlesreduces the probability of any given particle encountering anopenin

19、g in the sieve.7. Apparatus7.1 Sieves:7.1.1 Sieves will be used in a descending size openingsequence, larger mesh openings above smaller.7.1.1.1 Typical sets of sieves to be used are listed in Table 1.NOTE 2Sets of sieves are often modified. Typically, specifications onsets of sieves are negotiated

20、between the buyer and the seller. The actualsequence used by the operator performing the analysis can vary. Forexample, intermediate sieves can be chosen to avoid sieve flooding and tomake the sieving operation more efficient. Table 1 on nominal dimensionsin Specification E11 is to be used as a guid

21、e.7.1.2 A topsize sieve shall be used.7.1.3 Wire sieve cloth and frames used will conform toSpecification E11.7.1.4 Wire composition and types of frames must be sizedproperly for potential sieving operations. Stainless steel sievecloth is very resistant to distortion and preferred over softermetals.

22、7.1.5 Collecting pans and sieve covers designed to fit thesieves are required.7.1.6 Check Specification E11 for more details on standardsieves, service checks, and calibration.7.2 Sieve Shaker:7.2.1 Use a batch type sieve shaker.37.2.2 For sieving small quantities of coke or very fine coke(below 70

23、mesh), use a laboratory type sieving machine.48. Sample Preparation8.1 A representative gross sample of the coke lot must becollected using appropriate procedures from Practice D346,Test Methods D2234/D2234M, or Practice D4057.(WarningThe gross sample must not be crushed or reducedin topsize during

24、the gross sample collection process or duringsubsequent divisions of the sample.)8.2 The gross sample is divided into a smaller bulk samplefollowing guidelines in Test Methods D2234/D2234M. Thebulk sample must remain representative including no loss intopsize. Keeping in mind the initial sample mass

25、 requirements(see Table 2), the bulk sample must be at least twice the largestminimum mass that you estimate will be required for theanalysis.8.3 Upon delivery of the bulk sample to the laboratory, thesample shall be stored in a safe, dry location. Prevent any sizedegradation, loss of mass, or conta

26、mination of the sample untilneeded for the sieve analysis.8.4 Immediately prior to the sieve analysis, examine thebulk sample determining whether it is dry and free flowing. Ifnot, use the air drying apparatus and drying procedure ofPractice D2013.8.5 Determine the initial minimum test sample mass r

27、e-quired for the analysis from Table 2.8.6 Reduce the bulk sample to the recommended minimumtest sample mass required using the division methods outlinedin Test Methods D2234/D2234M or D4749.3The sole source of supply of the model number TS-1 Gilson Testing Screenmachine known to the committee at th

28、is time is Gilson Company, Inc., P. O. Box677, Worthington, OH 43085-0677. If you are aware of alternative suppliers, pleaseprovide this information to ASTM International Headquarters. Your comments willreceive careful consideration at a meeting of the responsible technical committee,1which you may

29、attend.4The sole source of supply of the Ro-Tap Testing Sieve Shaker known to thecommittee at this time is W. S. Tyler, Inc., 3200 Bessemer City Rd., P. O. Box 8900,Gastonia, NC 28053-9065. If you are aware of alternative suppliers, please providethis information to ASTM International Headquarters.

30、Your comments will receivecareful consideration at a meeting of the responsible technical committee,1whichyou may attend.TABLE 1 Industry Typical SievesCalcined Petroleum Coke Green Petroleum Coke25.0 mm 25.0 mm19.0 mm 12.5 mm12.5mm 4.75mm4.75 mm 4.75 mm3.35 mm2.36 mm1.18 mm600 m300 m212 m150 m75 m7

31、5 mTABLE 2 Initial Minimum Test Sample Mass Requirements forSieve AnalysisTopsize Type of CokeInitial SampleMass Requirement,gExpectedRelativeError, %75 mm Green 50,000 650 mm Green 30,000 625 mm Green/Calcined 1,500 319 mm Green/Calcined 1,300 112.5 mm Green/Calcined 1,000 14.75 mm Green/Calcined 8

32、00 12.36 mm Green/Calcined 700 11.18 mm Green/Calcined 500 1600 m Green/Calcined 300 1300 m Green/Calcined 100 1150 mAGreen/Calcined 50 1AFor topsize less than 150 m, use an initial sample mass requirement of 50 g.D5709 0929. Procedure9.1 Accurately weigh the minimum test sample mass (see8.6) before

33、 sieving with a precision equal to or better than0.5 % of the fraction being weighed. This mass is Mi(initialtest sample mass).9.2 Start with the sieve having the largest required opening.9.3 All sieving is to be done using a batch type sieve shaker.NOTE 3It is recommended that coke 50 mm in diamete

34、r and larger behand sieved by the methods outlined in Test Method D4749 rather thanattempting the use of a mechanical sieving device.9.4 Clean sieves prior to each use following the methodrecommended by the sieve manufacturer. If this information isunavailable, thoroughly brush the sieves using an a

35、ppropriatebristle or soft metal brush. Do not distort or damage sievesduring this process.9.5 Limit the portions of coke used for each sieving so thatall coke particles will be in direct contact with the mesh at thecompletion of sieving on each successive sieve.9.5.1 To determine the length of sievi

36、ng time, refer to Table3 for an estimated starting point. Use a sample divider asdescribed in Practice D2013 to form four subsamples from agross sample of a coke similar to that being tested. Sieve oneof these for the time given as an appropriate starting point, asecond for starting point plus 1 min

37、, a third for starting pointplus 2 min, and a fourth for starting point plus 3 min. Tabulatethe results of these tests by the percentages retained on eachsieve (see Section 10), and the length of sieving time requiredto stabilize the sieving result without particle size degradationshould be readily

38、apparent and can be established. If necessary,keep adding additional minutes until the percentages are stable.9.6 Sieve until all portions of the sample are used. Combineall separately sieved material representing a particular sizefraction, but obtained from sieving separate portions of thesame samp

39、le.9.7 Continue sieving with successive sieves which have thedesired size openings until the sieve having the smallestdesired size opening is used. Combine all the pan contents thathave passed through this smallest size opening and considerthese a particle size fraction.NOTE 4When larger particles a

40、re present that can physically affect thedimensional stability of sieve openings or possibly damage the sieve cloth,use a cover sieve (protective sieve of a larger mesh) to keep coarseparticles off the surface of the finer sieve.9.8 Sieving can be done by grouping sieves having thedesired size openi

41、ngs, always stacking larger sieve openingsabove smaller, thus accomplishing the sieving in fewer opera-tions. This is known as nesting sieves.9.9 Always use sieve covers and collecting pans to preventloss of fines and larger coke particles.9.10 Weigh each size fraction of sieved coke including thebo

42、ttom pan size fraction with a precision equal to or better than0.5 % of the fraction being weighed. These masses are mf(finalsize fraction mass).9.11 Be aware that the objective of mechanically shakingsieves is to place all of the given particles of a given size on theappropriate sieve while avoidin

43、g size degradation of any ofthese particles. Larger coke particles are especially susceptibleto particle degradation; avoid excessive sieving time (see9.5.1).10. Calculation10.1 Calculate the sum of the size fractions including panfraction (see 9.9) and call the sum Mf(combined final mass).10.1.1 Co

44、nvert all masses to the same units before calcula-tion, that is, kilograms or grams.10.1.2 Convert and utilize the masses of the size fractionsby both multiplying and making proper use of significantfigures. For example, if a size fraction weighed 11.25 kganother 204 g, and another 148 g, determine

45、all the masses tothe nearest 0.01 kg (since 11.25 kg is reported to the nearest0.01 kg) before proceeding with calculations, as follows:(1)11.25 kg0.20 kg0.15 kg11.60 kg10.2 If the percentage mass loss or gain is over 1 %, rejectthe analysis and make another test. The formula for thecalculation of t

46、he percentage mass loss or gain is as follows:% M 5Mf2 Mi!100Mi(2)where:Mf= combined final mass (10.1), g or kg,Mi= initial test sample mass (9.1), g or kg, and%M = % mass loss or gain upon sieving, g or kg.A mass gain will result in a positive percent while a massloss will result in a negative perc

47、ent.10.2.1 If the variation is greater than the above tolerance of1 %, recheck the figures for possible errors in determiningmass, calculating, blinding of the sieve openings, or accidentalspillage. If a calculation, transcription, or other error isdetected and correctable, correct the error. If the

48、 resultingvariation from initial sample weight is within the 1 % toler-ance, accept and report the corrected results. If the source oferror is not detected, or if it is detected but uncorrectable,repeat the test.10.3 Convert the mass mf(see 9.8) of an individual sizefraction to a percentage basis by

49、 dividing the mass of thatportion by the combined final mass Mf, or by the initial testsample mass Mias follows:%m5MfMforMi* 100 (3)where:mf= final size fraction mass (9.9), g or kg,Mf= combined final mass (10.1), g or kg,TABLE 3 Suggested Starting Points for Sieving TimeTime, min Size of Coke, mm5 coarse (greater than 12.5)10 medium (1.18 to 12.5)15 fine (less than 1.18)D5709 093Mi= initial test sample mass (9.1), g or kg, and% m = % mass of size fraction, g or kg.Calculate each mass % to the nearest 0.01 % and then roundto the nearest 0.1 %.10.3.1 The sum

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 标准规范 > 国际标准 > ASTM

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1