1、Designation:F241811 Designation: F2418 12An American National StandardStandard Specification forPolypropylene (PP) Corrugated Wall Stormwater CollectionChambers1This standard is issued under the fixed designation F2418; the number immediately following the designation indicates the year oforiginal a
2、doption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope*1.1 This specification covers requirements, test methods, materials, and
3、 marking for polypropylene (PP), open bottom, buriedchambers of corrugated wall construction used for collection, detention, and retention of stormwater runoff. Applications includecommercial, residential, agricultural, and highway drainage, including installation under parking lots and roadways.1.2
4、 Chambers are produced in arch shapes with dimensions based on chamber rise, chamber span, and wall stiffness. Chambersare manufactured with integral feet that provide base support. Chambers may include perforations to enhance water flow.Chambers must meet test requirements for arch stiffness, flatt
5、ening, and accelerated weathering.1.3 Analysis and experience have shown that the successful performance of this product depends upon the type and depth ofbedding and backfill, and care in installation. This specification includes requirements for the manufacturer to provide chamberinstallation inst
6、ructions to the purchaser.1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematicalconversions to SI units that are provided for information only and are not considered standard.1.5 This standard does not purport to address water quali
7、ty issues or hydraulic performance requirements associated with itsuse. It is the responsibility of the user to ensure that appropriate engineering analysis is performed to evaluate the water qualityissues and hydraulic performance requirements for each installation.1.6 The following safety hazards
8、caveat pertains only to the test method portion, Section 6, of this specification: This standarddoes not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of thisstandard to establish appropriate safety and health practices and deter
9、mine the applicability of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2D256 Test Methods for Determining the Izod Pendulum Impact Resistance of PlasticsD618 Practice for Conditioning Plastics for TestingD638 Test Method for Tensile Properties of PlasticsD790 Test Me
10、thods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating MaterialsD1600 Terminology for Abbreviated Terms Relating to PlasticsD2122 Test Method for Determining Dimensions of Thermoplastic Pipe and FittingsD2412 Test Method for Determination of External Loading
11、Characteristics of Plastic Pipe by Parallel-Plate LoadingD2990 Test Methods for Tensile, Compressive, and Flexural Creep and Creep-Rupture of PlasticsD4101 Specification for Polypropylene Injection and Extrusion MaterialsD4329 Practice for Fluorescent UV Exposure of PlasticsD6992 Test Method for Acc
12、elerated Tensile Creep and Creep-Rupture of Geosynthetic Materials Based on Time-TemperatureSuperposition Using the Stepped Isothermal MethodF412 Terminology Relating to Plastic Piping Systems1This specification is under the jurisdiction ofASTM Committee F17 on Plastic Piping Systems and is the dire
13、ct responsibility of Subcommittee F17.65 on Land Drainage.Current edition approved AprilFeb. 1, 2011.2012. Published April 2011.March 2012. Originally approved in 2004. Last previous edition approved in 20092011 asF2418-09a.F2418-11. DOI: 10.1520/F2418-112.2For referenced ASTM standards, visit the A
14、STM website, www.astm.org, or contact ASTM Customer Service at serviceastm.org. For Annual Book of ASTM Standardsvolume information, refer to the standards Document Summary page on the ASTM website.1This document is not an ASTM standard and is intended only to provide the user of an ASTM standard an
15、 indication of what changes have been made to the previous version. Becauseit may not be technically possible to adequately depict all changes accurately, ASTM recommends that users consult prior editions as appropriate. In all cases only the current versionof the standard as published by ASTM is to
16、 be considered the official document.*A Summary of Changes section appears at the end of this standard.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.2.2 AASHTO Specification:Section 12Buried Structures and Tunnel Liners, 12.12 Therm
17、oplastic Pipes Terminology Relating to Plastic Piping SystemsF2787 Practice for Structural Design of Thermoplastic Corrugated Wall Stormwater Collection ChambersF2418 1223. Terminology3.1 Definitions:3.1.1 Definitions used in this specification are in accordance with the definitions in Terminology F
18、412, and abbreviations arein accordance with Terminology D1600, unless otherwise indicated.3.1.2 chamberan arch-shaped structure manufactured of thermoplastic with an open-bottom that is supported on feet and maybe joined into rows that begin with, and are terminated by, end caps (see Fig. 1).3.1.3
19、corrugated walla wall profile consisting of a regular pattern of alternating crests and valleys (see Fig. 2).3.1.4 crestthe element of a corrugation located at the exterior surface of the chamber wall, spanning between two webelements (see Fig. 2).3.1.5 crownthe center section of a chamber typically
20、 located at the highest point as the chamber is traversed circumferentially.3.1.6 end capa bulkhead provided to begin and terminate a chamber, or row of chambers, and prevent intrusion ofsurrounding embedment materials.3.1.7 foota flat, turned out section that is manufactured with the chamber to pro
21、vide a bearing surface for transfer of verticalloads to the bedding (see Fig. 1).3.1.8 inspection portan opening in the chamber wall that allows access to the chamber interior.3.1.9 nominal heighta designation describing the approximate vertical dimension of the chamber at its crown (see Fig. 1).3.1
22、.10 nominal widtha designation describing the approximate outside horizontal dimension of the chamber at its feet (seeFig. 1).3.1.11 periodthe length of a single repetition of the repeated corrugation, defined as the distance from the centerline of avalley element to the centerline of the next valle
23、y element (see Fig. 2).3.1.12 risethe vertical distance from the chamber base (bottom of the chamber foot) to the inside of a chamber wall valleyelement at the crown as depicted in Fig. 1.3.1.13 spanthe horizontal distance from the interior of one sidewall valley element to the interior of the other
24、 sidewall valleyelement as depicted in Fig. 1.3.1.14 valleythe element of a corrugated wall located at the interior surface of the chamber wall, spanning between two webs(see Fig. 2).3.1.15 webthe element of a corrugated wall that connects a crest element to a valley element (see Fig. 2).4. Material
25、s and Manufacture4.1 This specification covers chambers made from virgin and rework PP plastic materials as defined by material mechanicalrequirements and chamber performance requirements.4.2 Polypropylene materials may be combined with copolymers, pigments, and impact modifiers which together are s
26、uitable formanufacture. Manufactured chamber and end cap material shall meet or exceed the requirements of designation PP0330B99945,Specification D4101. The minimum amount of polypropylene plastic in the material shall be 95 % by weight. The minimum tensilestress at yield, Test Method D638, shall no
27、t be less than 3 100 psi (21 MPa). The minimum flexural modulus (1 % secant), TestMethod D790, Procedure A, shall not be less than 145 000 psi (1 000 MPa). The minimum Izod Impact Resistance at 73 F (23C), Method A in Test Method D256, shall not be less than 4 ft-lb/in. (215 J/m). Materials shall me
28、et the creep requirements in5.3.5 and 5.3.6 of this standard.NOTE 1The polypropylene melt flow rate is specified for chamber manufacture by injection molding. The melt flow rate may be less than 10 if theNOTEThe model chamber shown in this standard is intended only asa general illustration. Any cham
29、ber configuration is permitted, as long asit meets all the specified requirements of this standard.FIG. 1 Model ChamberF2418 123manufactured chamber meets all other requirements in this standard. This cell class will be re-evaluated when new chamber classifications are added toTable 1.NOTE 2Polyprop
30、ylene plastic is prepared by the polymerization of propylene or propylene with other alpha olefins as described in SpecificationD4101.4.3 Rework MaterialClean rework material generated from the manufacturers own chambers may be used by the samemanufacturer, using the same type and grade resin, provi
31、ded that the chambers produced meet all the requirements of thisspecification.5. Requirements5.1 Chamber Description5.1.1 Chambers shall be produced in arch shapes symmetric about the crown with corrugated wall and integral feet for basesupport (see Fig. 1). Any arch shape is acceptable provided all
32、 the requirements of this specification are met.NOTE 3For purposes of structural optimization, the wall geometry (e.g.(for example, corrugation height, crest width, valley width, and web pitch)may vary around the chamber circumference.5.1.2 Chambers shall be produced with maximum span at the base of
33、 the chamber (bottom of the chamber foot).5.1.3 Chambers may include access ports for inspection or cleanout. Chambers with access ports shall meet the requirementsof this standard with access ports open and closed.5.1.4 Chambers may include perforations. Perforations shall be cleanly fabricated in
34、a size, shape, and pattern determined bythe manufacturer. Chambers with perforations shall meet the requirements of this standard.5.1.5 Chamber sections shall be manufactured to connect at the ends to provide rows of various lengths. Joints shall beconfigured to prevent intrusion of the surrounding
35、embedment material and shall be capable of carrying the full load for whichthe chamber is designed.5.1.6 Each row of chambers shall begin and terminate with an end cap.5.1.7 Chamber classifications, dimensions, and tolerances are provided in Table 1. Chamber classifications are based on thenominal h
36、eight and nominal width of the chambers, as illustrated in Fig. 1. Classifications shall be manufactured with the specifiedrise and span with tolerances, minimum foot width, and minimum wall thickness.5.2 WorkmanshipThe chambers shall be homogeneous throughout and essentially uniform in color, opaci
37、ty, density, and otherproperties. The interior and exterior surfaces shall be free of chalking, sticky, or tacky material. The chamber walls shall be freeof cracks, blisters, voids, foreign inclusions, or other defects that are visible to the naked eye and may affect the wall integrity.5.3 Physical
38、and Mechanical Properties of Finished Chamber:NOTEThe corrugation profile shown in this standard is intended only as a general illustration.Any corrugation pattern is permitted, as long as it meetsall the specified test requirements of this standard.FIG. 2 Model Corrugated WallTABLE 1 Classification
39、s, Dimensions, and TolerancesChamberClassificationNominalHeightNominalWidthRise SpanMinimumFoot WidthWallThicknessMinimumArchStiffnessConstantAAverage Minimumin. (mm) in. (mm)Averagein. (mm)Tolerance 6in (mm)Averagein. (mm)Tolerance 6in (mm) in. (mm) in. (mm) in. (mm) lb/ft/%16333 16 (406) 33 (838)
40、13.1 (333) 0.4 (10) 24.3 (617) 0.4 (10) 4.0 (100) 0.130 (3.3) 0.120 (3.0) 30030351 30 (762) 51 (1295) 26.7 (678) 0.4 (10) 42.6 (1082) 0.4 (10) 4.0 (100) 0.180 (4.6) 0.165 (4.2) 30045376 45 (1143) 76 (1930) 41.0 (1041) 1.0 (25) 67 (1702) 2.0 (51) 5.0 (127) 0.225 (5.7) 0.205 (5.2) 25060 3101 60 (1524)
41、 101 (2565) 54.7 (1389) 1.0 (25) 85 (2159) 2.0 (5.1) 8.0 (203) 0.245 (6.2) 0.225 (5.7) 250AThe values for arch stiffness should not be considered comparable to values of pipe stiffness.F2418 1245.3.1 Minimum Wall ThicknessChambers shall have a wall thickness not less than the minimum wall thickness
42、shown in Table1 when measured in accordance with 6.2.1.5.3.2 Minimum Foot WidthChambers shall have a foot width not less than the minimum foot width as shown in Table 1 whenmeasured in accordance with 6.2.2 (see also Fig. 1).5.3.3 Rise and Span DimensionsChambers shall meet the rise and span dimensi
43、on requirements shown in Table 1 whenmeasured in accordance with 6.2.3 and 6.2.4 (see also Fig. 1).5.3.4 Deviation From StraightnessThe chamber and its support feet shall not have a deviation from straightness greater thanL/100, where L is the length of an individual chamber, when measured in accord
44、ance with 6.2.5.NOTE 4This check is to be made at the time of manufacture and is included to prevent pre-installation deformations in a chamber that meets all otherrequirements of this standard.5.3.5 Creep Rupture StrengthSpecimens fabricated in the same manner and composed of the same materials, in
45、cluding alladditives, as the finished chambers shall have a 50 year creep rupture tensile strength at 73 F (23 C) not less than 700 psi (4.8MPa), when determined in accordance with 6.2.6.5.3.6 Creep ModulusSpecimens fabricated in the same manner and composed of the same materials, including all addi
46、tives,as the finished chambers shall have a 50 year tensile creep modulus at 73 F (23 C) not less than 24 000 psi (165 MPa) when testedat a stress level of 500 psi (3.5 MPa) or design service stress, whichever is greater. The creep modulus shall be determined inaccordance with 6.2.7. The actual test
47、 derived creep modulus shall be used in the design of the chamber (Note 5).NOTE 5The specified minimum modulus provides assurance of long-term stiffness for a chamber resin. It does not provide assurance that allchambers manufactured with a resin of this stiffness with be adequate for all long-term
48、load conditions. Structural calculations to demonstrate adequacyare still required in accordance with 5.5 and 5.6.2.NOTE 6The 50 year creep rupture strength and 50 year creep modulus values, determined by the test methods in 6.2.6 and 6.2.7, are used to definethe slope of the logarithmic regression
49、curves to describe the required material properties sampled from the product. They are not to be interpreted asservice life limits.5.3.7 Arch Stiffness ConstantChambers shall have an arch stiffness constant (ASC) not less than the minimum arch stiffnessconstant shown in Table 1 when determined in accordance with 6.2.8.5.3.8 FlatteningChambers shall show neither splitting, cracking, or breaking under normal light and the unaided eye nor lossof load carrying capacity when tested in accordance with 6.2.9.5.4 Accelerated WeatheringSpecimens fab