BS ISO 19923-2017 Space environment (natural and artificial) Plasma environments for generation of worst case electrical potential differences for spacecraft《航天环境(天然和人造) 生成航天器最坏情况下.pdf

上传人:lawfemale396 文档编号:586021 上传时间:2018-12-15 格式:PDF 页数:22 大小:1.40MB
下载 相关 举报
BS ISO 19923-2017 Space environment (natural and artificial) Plasma environments for generation of worst case electrical potential differences for spacecraft《航天环境(天然和人造) 生成航天器最坏情况下.pdf_第1页
第1页 / 共22页
BS ISO 19923-2017 Space environment (natural and artificial) Plasma environments for generation of worst case electrical potential differences for spacecraft《航天环境(天然和人造) 生成航天器最坏情况下.pdf_第2页
第2页 / 共22页
BS ISO 19923-2017 Space environment (natural and artificial) Plasma environments for generation of worst case electrical potential differences for spacecraft《航天环境(天然和人造) 生成航天器最坏情况下.pdf_第3页
第3页 / 共22页
BS ISO 19923-2017 Space environment (natural and artificial) Plasma environments for generation of worst case electrical potential differences for spacecraft《航天环境(天然和人造) 生成航天器最坏情况下.pdf_第4页
第4页 / 共22页
BS ISO 19923-2017 Space environment (natural and artificial) Plasma environments for generation of worst case electrical potential differences for spacecraft《航天环境(天然和人造) 生成航天器最坏情况下.pdf_第5页
第5页 / 共22页
亲,该文档总共22页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、BSI Standards PublicationWB11885_BSI_StandardCovs_2013_AW.indd 1 15/05/2013 15:06Space environment (natural and artificial) Plasma environments for generation of worst case electrical potential differences for spacecraftBS ISO 19923:2017 ISO 2017Space environment (natural and artificial) Plasma envi

2、ronments for generation of worst case electrical potential differences for spacecraftEnvironnement spatial (naturel et artificiel) Environnements plasmatiques pour la gnration de diffrences de potentiel lectrique les plus dfavorables pour les vhicules spatiauxINTERNATIONAL STANDARDISO19923First edit

3、ion2017-06Reference numberISO 19923:2017(E)National forewordThis British Standard is the UK implementation of ISO 19923:2017.The UK participation in its preparation was entrusted to Technical Committee ACE/68, Space systems and operations.A list of organizations represented on this committee can be

4、obtained on request to its secretary.This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. The British Standards Institution 2017 Published by BSI Standards Limited 2017ISBN 978 0 580 87689 9ICS 49.140Compliance wi

5、th a British Standard cannot confer immunity from legal obligations. This British Standard was published under the authority of the Standards Policy and Strategy Committee on 30 June 2017.Amendments/corrigenda issued since publicationDate Text affectedBRITISH STANDARDBS ISO 19923:2017 ISO 2017Space

6、environment (natural and artificial) Plasma environments for generation of worst case electrical potential differences for spacecraftEnvironnement spatial (naturel et artificiel) Environnements plasmatiques pour la gnration de diffrences de potentiel lectrique les plus dfavorables pour les vhicules

7、spatiauxINTERNATIONAL STANDARDISO19923First edition2017-06Reference numberISO 19923:2017(E)BS ISO 19923:2017ISO 19923:2017(E)ii ISO 2017 All rights reservedCOPYRIGHT PROTECTED DOCUMENT ISO 2017, Published in SwitzerlandAll rights reserved. Unless otherwise specified, no part of this publication may

8、be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISOs member body in the country of the r

9、equester.ISO copyright officeCh. de Blandonnet 8 CP 401CH-1214 Vernier, Geneva, SwitzerlandTel. +41 22 749 01 11Fax +41 22 749 09 47copyrightiso.orgwww.iso.orgBS ISO 19923:2017ISO 19923:2017(E)Foreword iv1 Scope . 12 Normative references 13 Terms and definitions . 14 Symbols and abbreviated terms .

10、25 Criteria for worst-case environment . 26 Procedures for application to spacecraft design 27 Space environments for worst-case simulations 37.1 GEO worst-case environment. 37.2 PEO and MEO worst-case environments 3Annex A (informative) Spacecraft charging analysis tools. 4Annex B (informative) Rou

11、nd-robin simulation75Annex C (normative) Material properties 10Annex D (informative) Tailoring guideline for this document .13Bibliography .14 ISO 2017 All rights reserved iiiContents PageBS ISO 19923:2017ISO 19923:2017(E)ForewordISO (the International Organization for Standardization) is a worldwid

12、e federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that

13、 committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.The procedures used to develop this docume

14、nt and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives

15、, Part 2 (see www .iso .org/ directives).Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the developme

16、nt of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www .iso .org/ patents).Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.For an explanation on the voluntary nature

17、of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISOs adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www .iso .org/ iso/ foreword .html.This docum

18、ent was prepared by Technical Committee ISO/TC 20, Aircraft and space vehicles, Subcommittee SC 14, Space systems and operations.iv ISO 2017 All rights reservedBS ISO 19923:2017INTERNATIONAL STANDARD ISO 19923:2017(E)Space environment (natural and artificial) Plasma environments for generation of wo

19、rst case electrical potential differences for spacecraft1 ScopeThis document specifies space plasma environments that lead to the generation of the worst-case surface potential differences for spacecraft. It also specifies how to estimate worst-case potential differences by using the simulation code

20、s provided.This document includes plasma energy and density in GEO, PEO, and MEO. This document does not include descriptions of plasma energy and density in LEO because large surface charging in LEO is likely to be due to high-voltage power generation by instrumentation of the spacecraft.This docum

21、ent deals with external surface charging of spacecraft only.2 Normative referencesThere are no normative references in this document.3 Terms and definitionsFor the purposes of this document, the following terms and definitions apply.ISO and IEC maintain terminological databases for use in standardiz

22、ation at the following addresses: IEC Electropedia: available at h t t p :/ www .electropedia .org/ ISO Online browsing platform: available at h t t p :/ www .iso .org/ obp3.1double Maxwellian distributionelectron and proton distribution functions in GEO fitted with two temperaturesNote 1 to entry:

23、Maxwellian distribution is as follows12:fvm nkTmvkTnkT()()()=+22321132212232p/expexxp mvkT222wherem is the mass of particle;k is the Boltzmann constant 1,380 648 52 1023J/K;n1, n2are the number density of particle;T1, T2are the temperature of particle.3.2differential voltagedifferential potentialpot

24、ential difference between any two points in spacecraft, especially the insulator surface and the spacecraft body, during differential charging ISO 2017 All rights reserved 1BS ISO 19923:2017ISO 19923:2017(E)3.3inverted potential gradientresult of differential charging where the insulating surface or

25、 dielectric reaches a positive potential with respect to the neighbouring conducting surface or metal: PDNM (positive dielectric negative metal)3.4normal potential gradientresult of differential charging where the insulating surface or dielectric reaches a negative potential with respect to the neig

26、hbouring conducting surface or metal: NDPM (negative dielectric positive metal)3.5surface chargingdeposition onto or the removal of electrical charges from external surfaces of the spacecraft4 Symbols and abbreviated termseV electron volt, where 1 eV = 1,602 1019JGEO geosynchronous orbitLEO low Eart

27、h orbitMEO medium Earth orbitPEO polar Earth orbitNe electron densityNi ion densityTe electron temperatureTi ion temperature5 Criteria for worst-case environmentThe worst-case environment shall be defined as the space environment measured in space that causes the maximum potential difference between

28、 the spacecraft electrical grounding body and external non-conductive surfaces or isolated conductive surfaces. Worst-case conditions shall be realistic.Combinations of densities and temperatures for a valid worst-case condition shall be subject to all of the following: reported in the literature or

29、 published databases; checked to make sure they are based on valid measurements; physically realistic (i.e. do not violate energy density or other physical requirements); and verified using good spacecraft charging codes (i.e. COULOMB-2, MUSCAT, SPIS, NASCAP-2k).This document is a part of spacecraft

30、 charging design.6 Procedures for application to spacecraft designSpacecraft charging simulation should be carried out at an early stage of spacecraft design. Ideally, this should be before selecting the materials for those spacecraft surfaces that will be exposed to the space environment.2 ISO 2017

31、 All rights reservedBS ISO 19923:2017ISO 19923:2017(E)Use worst-case environments mentioned in Clause 7 as input parameters for charging simulations.Material properties for spacecraft charging can change after exposure to the space environment. If possible, employ simulation tools using material pro

32、perties after the appropriate space environmental ageing. See Annex C.Radiation induced conductivity can change the bulk resistivity of materials. If possible, employ simulation tools that use the material properties after exposure and ageing in the appropriate space environment 11.In the computer s

33、imulations, use the appropriate spacecraft geometry, material data, and environmental conditions. Run the simulation from a zero charging initial condition until differential potentials fully develop.For examples of simulation codes, see Annex A. Note, however, that the list of codes in Annex A is n

34、ot exclusive.7 Space environments for worst-case simulations7.1 GEO worst-case environmentThe double Maxwellian distribution contained in Table 1 shall be used for worst-case simulation.Table 1 Space environment cases simulatedNe1 m3Te1 eVNe2 m3Te2 eVNi1 m3Ti1 eVNi2 m3Ti2 eV2,00E+05 400 2,30E+06 24

35、800 1,60E+06 300 1,30E+06 28 200Other worst cases have been proposed. See Annex B for comparisons. meand miare 9,109 383 56 1031kg and 1,672 621 9 1027kg, respectively.7.2 PEO and MEO worst-case environmentsThe worst-case plasma environment in PEO and MEO will be updated as more published measured e

36、nvironments become available. See Reference 3 for one published PEO environment. ISO 2017 All rights reserved 3BS ISO 19923:2017ISO 19923:2017(E)Annex A (informative) Spacecraft charging analysis toolsA.1 COULOMB-2COULOMB-2 code4can be applied to modelling of spacecraft charging in PEO and GEO. For

37、building of the spacecraft geometrical models and modelling results visualization, the SALOME platform is used. Plasma currents are computed in terms of Langmuir equations and particle trajectory modelling. Integral equation method is used for electrostatic equation solving. Database of electro-phys

38、ical properties of typical spacecraft materials is also included in the code. The code is not easily available outside Russia.A.2 MUSCATMUSCAT5is a fully 3D particle code that can be applied to spacecraft in LEO, PEO and GEO. Its algorithm is a combination of PIC and particle tracking. A parallel co

39、mputation technique is used for fast computation. It has a JAVA-3D based graphical user interface for 3D modelling of spacecraft geometry and output visualization. The surface interactions included in the NASCAP series and SPIS are modelled. A material property database is also included. The code is

40、 commercially available.A.3 NASCAP-2kThe most recent NASCAP code (NASCAP-2k) is available, free, to US citizens only. This is a comprehensive code with realistic geometry. It is reported to combine the capabilities of NASCAP-GEO, NASCAP-LEO and POLAR. The code is not easily available outside the US.

41、A.4 SPISSPIS6is a fully 3D PIC code that allows the exact computation of the sheath structure and the current collected by spacecraft surfaces for very detailed geometries. Surface interactions including photo-electron emission, back-scattering, secondary-electron emission and conduction are modelle

42、d. The source code is freely available from www .spis .org and a mailing list provides a limited amount of support.4 ISO 2017 All rights reservedBS ISO 19923:2017ISO 19923:2017(E)Annex B (informative) Round-robin simulation7B.1 Round-robin simulations with NASCAP-2kIn order to estimate the degree of

43、 charging on spacecraft in GEO charging environments, a generic spacecraft model was constructed. It is shown in Figure B.1. The back sides of the arrays were covered with graphite. Dimensions of the model are the following.The body is X: 1,86 m; Y: 1,55 m; Z: 2,56 m. The NPaint box on the top is X:

44、 0,62 m; Y: 0,516 m; Z: 0,62 m. The aluminium box at the bottom is X: 0,30 m; Y: 1,55 m; Z: 0,62 m. The solar arrays have a width of 2,5 m; length: 4,0 m; thickness: 0,10 m; twist: 45 degrees. The solar array booms are 2,0 m long and 0,10 m square in cross-section. The round antenna is 2,5 m in diam

45、eter and separated from the body by 0,3 m. Material properties are shown in Table B.1.Figure B.1 Calculation model with NASCAP-2k ISO 2017 All rights reserved 5BS ISO 19923:2017ISO 19923:2017(E)Table B.1 Material propertiesCoverglass materialDielec-tric constantThick-ness mBulk conductiv-ity 1m1Atom

46、ic numbermaxEmaxkeVProton yieldProton max eVPhotoemis-sion A m2Surface resistiv-ity /squareAtomic wt amuDensi-ty kg m3Graphite 1 1,00E-03 1 4,5 0,93 0,28 0,455 80 7, 20E-06 1 12,01 2 250Aluminium 1 1,00E-03 1 13 0,97 0,3 0,244 230 4,00E-05 1 26,98 2 699Black Kaptona3,5 2,50E-06 1 5 5,2 0,90 0,455 14

47、0 5,00E-06 1 12,01 1 600Kaptona3,5 1,27E-04 1,00E-16 5 2,1 0,15 0,455 140 2,00E-05 1,00E+16 12,01 1 600Solar cells (MgF2)3,8 1,25E-04 1,00E-13 10 5,8 1 0,244 230 2,00E-05 1,00E+19 20 2 660OSR 4,8 1,50E-04 1,00E-16 10 3,3 0,5 0,455 140 2,00E-05 1,00E+19 20 2 660NPaint 3,5 1,27E-04 1,00E-16 5 2,1 0,15

48、 0,455 140 2,00E-05 1,00E+16 12,01 1 600aKapton is the trade name of a product supplied by DuPont. This information is given for the convenience of users of this document and does not constitute an endorsement by ISO of the product named. Equivalent products may be used if they can be shown to lead

49、to the same results.This model was placed in simulated GEO environments in the NASCAP-2k spacecraft charging code and allowed to charge for 2 000 s of time. The environments used were daylight and eclipse in these proposed worst cases.The electron and ion densities and temperatures for these environments are given in Table B.2.Table B.2 Space environment cases simulatedEnvironment nameNe1 m3Te1 eVNe2 m3Te2 eVNi1 m3Ti1 eVNi2 m3Ti2

展开阅读全文
相关资源
  • BS ISO IEC 29150-2011 Information technology Security techniques Signcryption《信息技术 安全技术 签密》.pdfBS ISO IEC 29150-2011 Information technology Security techniques Signcryption《信息技术 安全技术 签密》.pdf
  • BS ISO IEC 15408-1-2009 Information technology - Security techniques - Evaluation criteria for IT Security - Introduction and general model《信息技术 安全技术 IT安全评价准则 一.pdfBS ISO IEC 15408-1-2009 Information technology - Security techniques - Evaluation criteria for IT Security - Introduction and general model《信息技术 安全技术 IT安全评价准则 一.pdf
  • BS ISO 7295-1988+A1-2014 Tyre valves for aircraft Interchangeability dimensions《飞机轮胎汽门嘴 互换性尺寸》.pdfBS ISO 7295-1988+A1-2014 Tyre valves for aircraft Interchangeability dimensions《飞机轮胎汽门嘴 互换性尺寸》.pdf
  • BS ISO 15118-1-2013 Road vehicles Vehicle to grid communication interface General information and use-case definition《道路车辆 车辆到电力通讯接口 通用信息和使用案例定义》.pdfBS ISO 15118-1-2013 Road vehicles Vehicle to grid communication interface General information and use-case definition《道路车辆 车辆到电力通讯接口 通用信息和使用案例定义》.pdf
  • BS ISO 13765-2-2004 Refractory mortars - Determination of consistency using the reciprocating flow table method《耐熔灰浆 使用往复流动表法测定一致性》.pdfBS ISO 13765-2-2004 Refractory mortars - Determination of consistency using the reciprocating flow table method《耐熔灰浆 使用往复流动表法测定一致性》.pdf
  • BS ISO 10998-2008+A1-2014 Agricultural tractors Requirements for steering《农业拖拉机 操纵要求》.pdfBS ISO 10998-2008+A1-2014 Agricultural tractors Requirements for steering《农业拖拉机 操纵要求》.pdf
  • BS Z 9-1998 Space data and information transfer systems - Advanced orbiting systems - Networks and data links - Architectural specification《空间数据和信息传输系统 高级轨道系统 网络和数据链接 结构规范》.pdfBS Z 9-1998 Space data and information transfer systems - Advanced orbiting systems - Networks and data links - Architectural specification《空间数据和信息传输系统 高级轨道系统 网络和数据链接 结构规范》.pdf
  • BS Z 7-1998 Space data and information transfer systems - ASCII encoded English《空间数据和信息传输系统 ASCII 编码英语》.pdfBS Z 7-1998 Space data and information transfer systems - ASCII encoded English《空间数据和信息传输系统 ASCII 编码英语》.pdf
  • BS Z 5-1997 Space data and information transfer systems - Standard formatted data units - Control authority procedures《航天数据和信息发送系统 标准格式数据单元 控制授权程序》.pdfBS Z 5-1997 Space data and information transfer systems - Standard formatted data units - Control authority procedures《航天数据和信息发送系统 标准格式数据单元 控制授权程序》.pdf
  • BS Z 4-1997 Space data and information transfer systems - Standard formatted data units - Structure and construction rules《航天数据和信息传输系统 标准格式数据单元 结构和构造规则》.pdfBS Z 4-1997 Space data and information transfer systems - Standard formatted data units - Structure and construction rules《航天数据和信息传输系统 标准格式数据单元 结构和构造规则》.pdf
  • 猜你喜欢
  • BS EN 50342-6-2015 Lead-acid starter batteries Batteries for Micro-Cycle Applications《起动用铅酸蓄电池 微循环装置用蓄电池》.pdf BS EN 50342-6-2015 Lead-acid starter batteries Batteries for Micro-Cycle Applications《起动用铅酸蓄电池 微循环装置用蓄电池》.pdf
  • BS EN 50342-7-2015 Lead acid starter batteries General requirements and methods of tests for motorcycle batteries《铅酸起动蓄电池 摩托车电池的通用要求和试验方法》.pdf BS EN 50342-7-2015 Lead acid starter batteries General requirements and methods of tests for motorcycle batteries《铅酸起动蓄电池 摩托车电池的通用要求和试验方法》.pdf
  • BS EN 50343-2014 Railway applications Rolling stock Rules for installation of cabling《轨道交通 铁路车辆 电缆敷设的安装规则》.pdf BS EN 50343-2014 Railway applications Rolling stock Rules for installation of cabling《轨道交通 铁路车辆 电缆敷设的安装规则》.pdf
  • BS EN 50344-1-2002 Routine tests for controls within the scope of the EN 60730 series - General requirements《EN 60730规定的控制的例行试验 一般要求》.pdf BS EN 50344-1-2002 Routine tests for controls within the scope of the EN 60730 series - General requirements《EN 60730规定的控制的例行试验 一般要求》.pdf
  • BS EN 50345-2009 Railway applications - Fixed installations - Electric traction - Insulating synthetic rope assemblies for support of overhead contact lines《轨道交通 固定装置 电力牵引 架空接触线路支撑.pdf BS EN 50345-2009 Railway applications - Fixed installations - Electric traction - Insulating synthetic rope assemblies for support of overhead contact lines《轨道交通 固定装置 电力牵引 架空接触线路支撑.pdf
  • BS EN 50347-2001 General purpose three-phase induction motors having standard dimensions and outputs - Frame numbers 56 to 315 and flange numbers 65 to 740《标准尺寸和输出的通用三相感应电动机 框号56-3.pdf BS EN 50347-2001 General purpose three-phase induction motors having standard dimensions and outputs - Frame numbers 56 to 315 and flange numbers 65 to 740《标准尺寸和输出的通用三相感应电动机 框号56-3.pdf
  • BS EN 50348-2010 Stationary electrostatic application equipment for non-ignitable liquid coating material Safety requirements《非易燃性液体涂料材料用固定式静电应用设备 安全要求》.pdf BS EN 50348-2010 Stationary electrostatic application equipment for non-ignitable liquid coating material Safety requirements《非易燃性液体涂料材料用固定式静电应用设备 安全要求》.pdf
  • BS EN 50350-2004 Charging control systems for household electric room heating of the storage type - Methods for measuring performance《蓄热式家用房间电供暖用充电控制系统 性能测量方法》.pdf BS EN 50350-2004 Charging control systems for household electric room heating of the storage type - Methods for measuring performance《蓄热式家用房间电供暖用充电控制系统 性能测量方法》.pdf
  • BS EN 50353-2001 Insulating oil - Determination of fibre contamination by the counting method using a microscope《绝缘油 用显微镜计数法测定纤维污染物》.pdf BS EN 50353-2001 Insulating oil - Determination of fibre contamination by the counting method using a microscope《绝缘油 用显微镜计数法测定纤维污染物》.pdf
  • 相关搜索

    当前位置:首页 > 标准规范 > 国际标准 > BS

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1