CEPT ERC REPORT 74-1999 Compatibility Between Radio Frequency Identification Devices (RFID) and The Radioastronomy Service At 13 MHz (Menton May 1999)《无线射频识别装置(RFID)和无线射电天文业务两者的兼容性.pdf

上传人:confusegate185 文档编号:592930 上传时间:2018-12-16 格式:PDF 页数:14 大小:607.49KB
下载 相关 举报
CEPT ERC REPORT 74-1999 Compatibility Between Radio Frequency Identification Devices (RFID) and The Radioastronomy Service At 13 MHz (Menton May 1999)《无线射频识别装置(RFID)和无线射电天文业务两者的兼容性.pdf_第1页
第1页 / 共14页
CEPT ERC REPORT 74-1999 Compatibility Between Radio Frequency Identification Devices (RFID) and The Radioastronomy Service At 13 MHz (Menton May 1999)《无线射频识别装置(RFID)和无线射电天文业务两者的兼容性.pdf_第2页
第2页 / 共14页
CEPT ERC REPORT 74-1999 Compatibility Between Radio Frequency Identification Devices (RFID) and The Radioastronomy Service At 13 MHz (Menton May 1999)《无线射频识别装置(RFID)和无线射电天文业务两者的兼容性.pdf_第3页
第3页 / 共14页
CEPT ERC REPORT 74-1999 Compatibility Between Radio Frequency Identification Devices (RFID) and The Radioastronomy Service At 13 MHz (Menton May 1999)《无线射频识别装置(RFID)和无线射电天文业务两者的兼容性.pdf_第4页
第4页 / 共14页
CEPT ERC REPORT 74-1999 Compatibility Between Radio Frequency Identification Devices (RFID) and The Radioastronomy Service At 13 MHz (Menton May 1999)《无线射频识别装置(RFID)和无线射电天文业务两者的兼容性.pdf_第5页
第5页 / 共14页
亲,该文档总共14页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、STDOCEPT ERC REPORT 7Li-ENGL 1979 m 232bllLll 1b3b b23 m ERC REPORT 74 =,q 9 European Radiocommunications Committee (ERC) - _- within the European Conference of Postal and Telecommunications Administrations (CEPT) COMPATIBILITY BETWEEN RADIO FREQUENCY IDENTIFICATION DEVICES (WID) AND THE RADIOASTRON

2、OMY SERVICE AT 13 MHz Menton, May 1999 _ STD-CEPT ERC REPOR“ 7I-ENGL 1999 E 232bILI OOLb3bL 5bT m 9 EKC REPORJ 74 Copyright 1W9 the European Confereme of Postal and Telecommunications Admlliistrations (CW) STD-CEPT ERC REPORT 74-ENGL 1999 E 232bllLY OGLb3b2 qTb E ERC REPORT 74 COMPATIBILITY BETWEEN

3、RADIO FREQUENCY IDENTIFICATION DEVICES (RFID) AND THE RADIOASTRONOMY SERVICE AT 13 MHz INDEX TABLE INTRODUCTION . 1 DESCRIPTION OF NANCAY ACTIVITIES AT 13 MHZ . 1 DESCRIPTION OF THE RFID SYSTEMS . 1 MEASUREMENT CONFIGURATIONS . 3 RESULTS . 4 CONCLUSIONS . . 5 ANNEX 1: ANNEX 2: A“Ex 3: ANNEX 4: ANNEX

4、 5: ANNEX 6: MEASUREMENT IN THE ANTENNA FIELD, 13.56MHz SIGNAL: WID CARRIER . 6 MEASUREMENT IN THE ANTENNA FIELD, 13.038 MHz SIGNAL: SPURIOUS SIGNAL . 7 MEASUREMENT JN THE ANTENNA FIELD, 13.398 MHz SIGNAL: A MODULATION PRODUCT 8 MEASUREMENT IN THE ANTENNA FIELD, FREQUENCY SPECTRUM . 9 MEASUREMENT IN

5、 CAR PARK, 1.5 KM FROM THE ANTENNA PHOTOGRAPH OFTHE ANTENNA ARRAY sm 1 1 STD-CEPT ERC REPORT 74-ENGL 1779 232L4L4 00Lb3b3 332 D ERC REPORT 74 Page 1 COMPATIBILITY BETWEEN RADIO FREQUENCY IDENTIFICATION DEVICES (RFID) AND THE RADIOASTRONOMY SERVICE AT 13 MHZ 1 INTRODUCTION The band 13.553-13.567 MHz

6、is designated by the ERC recommendation CEPT/ERC/REC 70-03 for non specific Short Range Device (Annex 1) and Inductive Applications (Annex 9). The fieldstrength level is 42 dBpA/m at 10 m, equivalent to approximately 10 mW ERP. Industry has developed RFIDs for a number of new applications such as ti

7、cketing systems, access control, logistics applications, car entry, container identification, contactless credit cards, etc. WID systems at 13.56 MHz use a modulated signal according to Annex 1 or 9 of CEPT/ERC/REC 70-03, with a fieldstrength level of 42 dBpA/m at 10 m. A modulated carrier must meet

8、 the transmitter mask of Annex 9 (Inductive Applications) at 13.41 MHz or lower frequencies and the modulation products must meet the spurious level of -3.5 dBpA/m ( as per EN 300 330). The band 13.36-13.41 MHz is allocated to the radio astronomy service on a primary basis. In Europe, the only radio

9、 astronomy site operating at 13 MHz is Nancay (France).Thus, the purpose of these measurements was to evaluate the interference potential of out of band and spurious emissions of 13.56 MHz RFID systems into the radio astronomy band. 2 DESCRIPTION OF NANCAY ACTIVITIES AT 13 MHz The Decametric Array i

10、s an interferometer consisting of an array of 144 phased antennas. It is composed of two sub-arrays of 72 antennas, placed over an area of 1O.OOO square meters. The array is capable of measuring circular polarisation, which is very important since the radiation from Jupiter is highly polarised. The

11、frequency range that can be observed is 10-100 MHz (or 3-30 meter wavelengths): a typical observation for Jupiter activities ranges from 10 MHz to 40 MHz and from 20 MHz to 75 MHz for solar emissions. These frequencies are scanned every 350 msec. The sensitivity of the receiver is equivalent to lo-%

12、 W/m2/Hz, the antenna gain is 25 dB at a frequency of 25 MHz. The principal beam, i.e. the spatial resolution, has a size of 7 by 14 degrees (large compared to the actual size of a few degrees for the solar corona or only a fraction of a degree for Jupiters magnetosphere, as seen from the Earth). Th

13、e resolution bandwidth is 3 Wz. Around the site of Nancay, two protection zones are defined: Within a radius of 1 km, the installation of any radio transmitter is forbidden Within a 3 km radius, the radioastronomy site must be consulted when installing new radio transmitting equipment 3 DESCRIPTION

14、OF THE RFID SYSTEMS An WID system consists of an interrogator or a reader and one or several tags as data carriers. The tags are attached to objects like warehouse goods or carried by human beings as smart cards or ticketing cards. WID systems are used in logistics for manufacturing or in automotive

15、 applications, e.g. immobilisers or radio keys (car entry) systems, and in transportation for baggage tagging. Tags are only active when interrogated by the reader. They are normally batteryless, dormant and powered by the FW interrogation signal to respond with a data signal. The power level of tag

16、s is typically 60- 80 dB below the carrier level of the interrogator. Most RFID systems use bidirectional communications which means that the interrogation signal which is needed to power the tag, is modulated by ASK (Amplitude Modulation). To minimize the emitted spectrum with regard to amplitude a

17、nd frequency, a low level ASK modulation (10%) in combination with optimized data transmission (encoding) methods are used. STD.CEPT ERC REPORT 74-ENGL 1999 W 232b414 002b3bll 277 m - ERC REPORT 74 Page 2 13.56 MHz Am pl if er Modulator - RFID Systems under test in Nancay were supplied by Philips an

18、d Texas Instruments (TIRIS) (see Figure 1). The actual emission levels of the equipment were verified by a Rhode so a margin of 45.5 dB is realised (See Note 1 below). The results and conclusions are representative for decametric astronomy receiving sites. Note 1: Refering to the interference range

19、calculation in the Inductive System Propagation Model Report; 0 using a carrier limit of 42dBpNm at a distance = 10 m at a frequency of 13.56 MHz , at which limit an interference range of 1.5 km was measured; assuming a ground type of ,medium dry ground“, defined by a conductivity of lmS/m and a rel

20、ative permittivity of 15; a permissible interference level of 27 dBpV/m is found for interfering-sources on the surface. Attachments: Annex 1: Annex 2: Annex 3: Annex 4: Measurement in the Antenna field: 13.56MH.z signal WID Carrier Measurement in the Antenna Field: 13.038 MHz signal Spurious signal

21、 Measurement in the Antenna Field: 13.398 MHz signal A modulation product Measurement in the Antenna Field: Frequency spectrum RFID transmitter “on“ Measurement in the Antenna Field: Frequency spectrum RFID transmitter “off Measurement in Car Park, 1.5 km from the Antenna RFID transmitter “on“ Measu

22、rement in Car Park, 1.5 km from the Antenna RFID transmitter “on“ Photograph of the antenna array site Annex 5: Annex 6: ERC REPORT 74 Page 6 ANNEX 1: Measurement in the Antenna field, 13.56MHz signal: RFID Carrier 1 50 Porteuse 13.560 MHZ Niveau analyseur -55dBm/3.141 nW (resolution 3 KHZ) 50 m T 4

23、0 30 20 O 1055 1056 1057 1056 1059 1l:OO 11:Ol 1l:M 11:03 11:M 11:05 11:06 1107 STD.CEPT ERC REPORT 74-ENGL 1777 232blilI 00Lb3b7 d50 I ERC REPORT 74 Page 7 ANNEX 2: Measurement in the Antenna Field, 13.038 MHz signal: Spurious signal 13,038 SHZ (-83 dh) Porteuse 7 O 60 40 (10!55 - 11:OO TU) I Porte

24、ise OFF (1 1:OO - 11:08 TU) ERC REPORT 74 Page 8 ANNEX 3: Measurement in the Antenna Field, 13.398 MHz signal: A modulation product 13.398 MHz (- 95 dBm) - 100 c 25 2o m V 15 10 20 , I“I“I“I“,I 1055 1056 1057 1056 1059 11:OO 11:Ol 1102 11:03 1l:M 11:05 11:06 1107 . ERC REPORT 74 Page 9 o ANNEX 4: Me

25、asurement in the Antenna Field, Frequency spectrum RFiD transmitter “on“ Measurement in the Antenna Field, Frequency spectrum, WID transmitter “off M “1“1“1 I, III II 118, III 8191 IIIII1II1, - - - - Spectre moyen porteuse ON (lo:% - 11:O TU) - - zm- - - - - - - - - - - - - ,I. l .I. I . I .,. - o .

26、 I. I. I.l.I.I.l. 13.M 13.10 I32 1336 13.40 1150 13.60 -E 150 Spectre moyen porteuse OFF (1 1:OO - 11:08 TU) i SD-CEPT ERC REPORT 7i.i-ENGL 3999 R 232b4L4 OCllb372 395 D . ERC REPORT 74 Page 10 ANNEX 5: Measurement in Car Park, 1.5 km from the Antenna RFiD transmitter “on“ Measurement in Car Park, 1.5 km from the Antenna., RFiD transmitter “on“ im (12:17 - 12r22 TU) 1 13.00 13.10 132 13.33 13.40 13.50 I 3.60 J 13.60 ERC REPORT 74 Page 1 I ANNEX 6: Photograph of the antenna array site

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 标准规范 > 国际标准 > 其他

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1