1、双曲线及其标准方程,1. 椭圆的定义,2. 引入问题:,复习,双曲线图象,拉链画双曲线,|MF1|+|MF2|=2a( 2a|F1F2|0),如图(A),,|MF1|-|MF2|=|F2F|=2a,如图(B),,上面 两条合起来叫做双曲线,由可得:,| |MF1|-|MF2| | = 2a (差的绝对值),|MF2|-|MF1|=|F1F|=2a, 两个定点F1、F2双曲线的焦点;, |F1F2|=2c 焦距.,(1)2a2c ;,平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于F1F2)的点的轨迹叫做双曲线.,(2)2a 0 ;,双曲线定义,思考:,(1)若2a=2c,则轨迹是什么
2、?,(2)若2a2c,则轨迹是什么?,说明,(3)若2a=0,则轨迹是什么?,| |MF1| - |MF2| | = 2a,(1)两条射线,(2)不表示任何轨迹,(3)线段F1F2的垂直平分线,求曲线方程的步骤:,双曲线的标准方程,1. 建系.,以F1,F2所在的直线为x轴,线段F1F2的中点为原点建立直角坐标系,2.设点,设M(x , y),则F1(-c,0),F2(c,0),3.列式,|MF1| - |MF2|=2a,4.化简,此即为焦点在x轴上的双曲线的标准方程,若建系时,焦点在y轴上呢?,看 前的系数,哪一个为正,则在哪一个轴上(焦点跟着正项走),2、双曲线的标准方程与椭圆的标准方程有何区别与联系?,1、如何判断双曲线的焦点在哪个轴上?,问题,F(c,0),F(c,0),a0,b0,但a不一定大于b,c2=a2+b2,ab0,a2=b2+c2,双曲线与椭圆之间的区别与联系,|MF1|MF2|=2a,|MF1|+|MF2|=2a,F(0,c),F(0,c),变式2答案,课本例2,写出适合下列条件的双曲线的标准方程,练习,1.a=4,b=3,焦点在x轴上; 2.焦点为(0,-6),(0,6),过点(2,5) 3.a=4,过点(1, ),例2:如果方程 表示双曲线,求m的取值范围.,解:,