1、椭圆的简单几何性质,一、复习回顾:,1.椭圆:,到两定点F1、F2的距离之和为常数(大于|F1F2 |)的动点的轨迹叫做椭圆。,2.椭圆的标准方程:,3.椭圆中a,b,c的关系:,a2=b2+c2,当焦点在X轴上时,当焦点在Y轴上时,二、椭圆 简单的几何性质,1、范围:,-axa, -byb 椭圆落在x=a,y= b组成的矩形中,椭圆的对称性,2、对称性:,从图形上看,椭圆关于x轴、y轴、原点对称。 从方程上看: (1)把x换成-x方程不变,图象关于y轴对称; (2)把y换成-y方程不变,图象关于x轴对称; (3)把x换成-x,同时把y换成-y方程不变,图象关于原点成中心对称。,3、椭圆的顶点
2、,令 x=0,得 y=?,说明椭圆与 y轴的交点? 令 y=0,得 x=?说明椭圆与 x轴的交点?,*顶点:椭圆与它的对称轴的四个交点,叫做椭圆的顶点。 *长轴、短轴:线段A1A2、B1B2分别叫做椭圆的长轴和短轴。 a、b分别叫做椭圆的长半轴长和短半轴长。,根据前面所学有关知识画出下列图形,(1),(2),A1,B1,A2,B2,B2,A2,B1,A1,4、椭圆的离心率,离心率:椭圆的焦距与长轴长的比,叫做椭圆的离心率。,1离心率的取值范围:,2离心率对椭圆形状的影响:,0e1,1)e 越接近 1,椭圆就越扁; 2)e 越接近 0,椭圆就越圆。,3e与a,b的关系:,|x| a,|y| b,
3、关于x轴、y轴成轴对称;关于原点成中心对称,(a,0)、(-a,0)、(0,b)、(0,-b),(c,0)、(-c,0),长半轴长为a,短半轴长为b. ab,a2=b2+c2,|x| a,|y| b,关于x轴、y轴成轴对称;关于原点成中心对称,(a,0)、(-a,0)、(0,b)、(0,-b),(c,0)、(-c,0),长半轴长为a,短半轴长为b. ab,a2=b2+c2,|x| b,|y| a,同前,(b,0)、(-b,0)、(0,a)、(0,-a),(0 , c)、(0, -c),同前,同前,同前,例1、已知椭圆方程为16x2+25y2=400,则,它的长轴长是: ;短轴长是: ; 焦距是
4、: ;离心率等于: ; 焦点坐标是: ;顶点坐标是: ; 外切矩形的面积等于: ;,10,8,6,80,练习1.已知椭圆方程为6x2+y2=6,它的长轴长是: ;短轴长是: ; 焦距是: ;离心率等于: ; 焦点坐标是: ;顶点坐标是: ; 外切矩形的面积等于: 。,2,例2过适合下列条件的椭圆的标准方程:长轴长等于 ,离心率等于 ,例3.已知椭圆的中心在原点,焦点在坐标轴上,长轴是短轴的三倍,且椭圆经过点P(3,0),求椭圆的方程。,小 结 :,1、椭圆的定义,标准方程类型与图象的对应 关系以及判断方法,2、椭圆的定义、标准方程及几何意义,3、注重数形结合的思想。,课堂小结 (1)椭圆的简单几何性质(2)应用性质求标准方程的方法和步骤,