2011届上海市浦东新区4月中考模拟数学试卷与答案.doc

上传人:刘芸 文档编号:296950 上传时间:2019-07-10 格式:DOC 页数:10 大小:212.31KB
下载 相关 举报
2011届上海市浦东新区4月中考模拟数学试卷与答案.doc_第1页
第1页 / 共10页
2011届上海市浦东新区4月中考模拟数学试卷与答案.doc_第2页
第2页 / 共10页
2011届上海市浦东新区4月中考模拟数学试卷与答案.doc_第3页
第3页 / 共10页
2011届上海市浦东新区4月中考模拟数学试卷与答案.doc_第4页
第4页 / 共10页
2011届上海市浦东新区4月中考模拟数学试卷与答案.doc_第5页
第5页 / 共10页
点击查看更多>>
资源描述

1、2011届上海市浦东新区 4月中考模拟数学试卷与答案 选择题 下列各式中,正确的是 ( ) A ; B ; C ; D 答案: D 下列根式中,属于最简二次根式的是( ) A ; B ; C ; D 答案: D 如果反比例函数 的图像经过点( -1,2),那么这个反比例函数的图像一定经 过点( ) A( ,2); B( ,2); C( 2,-1); D( -2,-1) 答案: C 为了奖励学习有进步的学生,老师请小杰帮忙到文具店买了 20本练习簿和10支水笔,共花了 36元已知每支水笔的价格比每本练习簿的价格贵 1.2元,如果设练习簿每本为 x元,水笔每支为 y元,那么下面列出的方程组中正确的

2、是( ) A B C D 答案: B 已知在 ABC中,点 D、点 E分别在边 AB和边 AC上,且 AD=2DB,AE=2EC, , ,用 、 表示向量 正确的是( ) ( A) ; ( B) ; ( C) ; ( D) 答案: D 下列说法中,正确的是( ) A每个命题都有逆命题; B每个定理都有逆定理; C真命题的逆命题也是真命题; D假命题的逆命题也是假命题 答案: A 填空题 如果从数字 1、 2、 3、 4中,任意取出两个数字组成一个两位数,那么这个两位数是奇数的概率是 答案: 正十边形的中心角等于 度 答案: 已知 O的直径为 6cm,点 A在直线 l上,且 AO=3cm,那么直

3、线 l与 O的位置关系是 答案:相交或相切 已知在等腰梯形 ABCD中, AD BC, AB=AD=CD, AC AB,那么= 答案: 已知在三角形纸片 ABC中, C=90度, BC=1, AC=2,如果将这张三角形纸片折叠,使点 A与点 B重合,折痕交 AC于 点 M,那么 AM= 答案: 请写出一个图像的对称轴为 y轴,且经过点( 2,-4)的二次函数式,这个二次函数的式可以是 答案: 等(满足 即可) 在一次函数 中,如果 的值随自变量 的值增大而减小,那么这个一次函数的图像一定不经过第 象限 答案:三 已知关于 的方程 有两个相等的实数根,那么 m的值是 答案: 如果关于 x的方程

4、的一个根为 3,那么 a= 答案: 方程 的解是 答案: 函数 的定义域是 答案: 的平方根等于 答案: 解答题 (本题满分 12分,其中第( 1)小题 3分,第( 2)小题 4分,第( 3)小题5分) 如图,已知在直角坐标平面内,点 A的坐标为( 3,0),第一象限内的点 P在直线 y=2x上, PAO=45度 ( 1)求点 P的坐标; ( 2)如果二次函数的图像经过 P、 O、 A三点,求这个二次函数的式,并写出它的图像的顶点坐标 M; ( 3)如果将第( 2)小题中的二次函数的图像向上或 向下平移,使它的顶点落在直线 y=2x上的点 Q处,求 APM与 APQ的面积之比 答案:解:( 1

5、)过点 P作 PH OA,垂足为点 H 点 P在直线 上, 设点 P的坐标为 ( 1分) PAO=45, PH OA, PAO= APH=45 PH=AH=2x 点 的坐标为( 3,0), ( 1分) 点 P 的坐标为( 1,2) ( 1 分) ( 2)设所求的二次函数式为 图像经过 P( 1,2)、 O( 0,0)、 A( 3,0)三点, ( 1分) 解得 ( 1分) 所求的二次函数式为 ( 1分) 顶点 M 的坐标为( , ) ( 1 分) ( 3)根据题意,得点 Q的坐标为( , 3) ( 1分) , , , , ( 2分) ( 1分) APM与 APQ的面积之比为 ( 1分) 另解:根

6、据题意,得点 Q的坐标为( , 3) ( 1分) 设图像的对称轴与直线 AP相交于点 N,则点 N的坐标为( , ) , ( 1分) , ( 2分) APM与 APQ的面积之比为 ( 1分) (本题满分 12分,其中每小题各 6分) 已知:如图,在 ABC中, M是边 AB的中点, D是边 BC延长线上一点, DN CM,交边 AC于点 N ( 1)求证: MN BC; ( 2)当 ACB为何值时,四边形 BDN M是等腰梯形?并证明你的猜想 答案:( 1)证法一:取边 BC的中点 E,联结ME ( 1分) BM=AM, BE=EC, ME AC ( 1分) MEC= NCD , DN CM,

7、 MCE= D MEC NCD ( 1分) ( 1分) 又 CM DN, 四边形 MCDN是平行四边形 ( 1分) MN BC ( 1 分) 证法二: 延长 CD到 F,使得 ,联结 AF ( 1分) , , ( 1分) , MC AF ( 1分) MC DN, ND AF ( 1分) 又 , ( 1分) MN BC ( 1 分) ( 2)解:当 ACB=90时,四边形 BDNM是等腰梯形 ( 1分) 证明如下: MN BD, BM 与 DN 不平行, 四边形 BDNM 是梯形 ( 2 分) ACB=90, , ( 2分) , BM DN ( 1分) 四边形 BDNM是等腰梯形 (本题满分 1

8、0分) 在 2010年上海世博会举行期间,某初级中学组织全校学 生参观世博园,亲身体验 “城市让生活更美好 ”的世博理念为了解学生就学校统一组织参观过的 5个场馆的最喜爱程度,随机抽取该校部分学生进行问卷调查(每人应选且只能选一个场馆),数据整理后,绘制成如下的统计图: 请根据统计 图提供的信息回答下列问题: ( 1)本次随机抽样调查的样本容量是 ; ( 2)本次随机抽样调查的统计数据中,男生最喜爱场馆的中位数是 名; ( 3)估计该校女生最喜爱泰国馆的约占全校学生数的 %(保留三个有效数字); ( 4)如果该校共有 2000名学生,而且六、七、八年级学生人数总和比九年级学生人数的 3倍还多

9、200名,试通过计算估计该校九年级学生最喜爱中国馆的人数约为多少名? 答案:解:( 1)300; ( 2分) ( 2) 30; ( 2分) ( 3) 12.7; (2分) ( 4)设该校九年级学生人数为 x名 ( 1分) 根据题意,得 ( 1分) 解方程,得 ( 1分) (名) 答:估计该校九年级学生喜欢中国馆的人数约为 159 名 ( 1 分) (本题满分 10分) 如图,已知 AB是 O的直径, CD A B,垂足为点 E,如果 BE=OE,AB=10cm,求 ACD的周长 答案:解:联结 OC AB是 O的直径, CD AB, ( 2分) AB=10cm, AO=BO=CO=5cm (

10、1分) BE=OE, cm, cm ( 1 分) 在 Rt COE中, CD AB, cm ( 2分) cm ( 1分) 同理可得 cm, cm ( 2 分) ACD的周长为 cm ( 1分) (本题满分 10分) 先化简,再求值: ,其中 答案:解:原式 ( 2分) ( 2分) ( 2分) 当 时,原式 ( 4 分) (本题满分 10分)求不等式组 的整数解 答案:解:由 得 ( 2分) 由 得 ( 2分) 原不等式组的解集为 ( 3 分) 原不等式组的整数解为 , 0, 1 ( 3分) (本题满分 14分,其中第( 1)小题 3分,第( 2)小题 5分,第( 3)小题6分) 如图,已知在

11、ABC中, AB=4, BC=2,以点 B为圆心,线段 BC长为半径的弧交边 AC于点 D,且 DBC= BAC, P是边 BC延长线上一点,过点 P作PQ BP,交线段 BD的延长线于点 Q设 CP=x, DQ=y ( 1)求 CD的长; ( 2)求 y关于 x的函数式,并写出它的定义域; ( 3)当 DAQ=2 BAC时,求 CP的值 答案:解:( 1) DBC= BAC, BCD= ACB, BDC ABC ( 1分) ( 1分) , , ( 1分) ( 2) BC=BD, BCD= BDC DBC= BAC, BCD= ACB, ABC= BDC ABC= ACB AC=AB=4 ( 1 分) 作 AH BC,垂 足为点 H BH=C H=1 作 DE BC,垂足为点 E,可得 DE AH ,即 , ( 1分) 又 DE PQ, ,即 ( 1分) 整理,得 ( 1分) 定义域为 x0 ( 1分) ( 3) DBC+ DCB= DAQ + DQA, DCB= ABD+ DBC, 2 DBC+ ABD= DAQ+ DQA DAQ=2 BAC, BAC= DBC, ABD= DQA ( 1 分) AQ=AB=4 ( 1分) 作 AF BQ,垂足为点 F,可得 , ( 1分) 解得 ( 1分) ( 1分) 解得 ,即 ( 1分)

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 考试资料 > 中学考试

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1