2010-2011学年广东惠阳高级中学高二第二学期第二次段考数学试题(理科).doc

上传人:花仙子 文档编号:319772 上传时间:2019-07-09 格式:DOC 页数:9 大小:254.41KB
下载 相关 举报
2010-2011学年广东惠阳高级中学高二第二学期第二次段考数学试题(理科).doc_第1页
第1页 / 共9页
2010-2011学年广东惠阳高级中学高二第二学期第二次段考数学试题(理科).doc_第2页
第2页 / 共9页
2010-2011学年广东惠阳高级中学高二第二学期第二次段考数学试题(理科).doc_第3页
第3页 / 共9页
2010-2011学年广东惠阳高级中学高二第二学期第二次段考数学试题(理科).doc_第4页
第4页 / 共9页
2010-2011学年广东惠阳高级中学高二第二学期第二次段考数学试题(理科).doc_第5页
第5页 / 共9页
点击查看更多>>
资源描述

1、2010-2011学年广东惠阳高级中学高二第二学期第二次段考数学试题(理科) 选择题 函数 的定义域是 ( ) A B C D 答案: A 在某项测量中,测量结果 服从正态分布 若 在 (0, 1)内取值的概率为 0.4,则 在 (0, 2)内取值的概率为 答案: .8 已知图 1是函数 的图象,则图 2中的图象对应的函数可能是 ( ) A B C D 答案: C 已知 ,则 的最小值为 ( ) A B C D 答案: D 由数字 1,2,3,4,5组成没有重复数字的五位数,其中偶数共有( )个。 A 60 B 48 C 36 D 24 答案: B 在正项等比数列 中,若 , ,则 ( ) A

2、 B C D 答案: A 已知复数 z满足 ,则 z为 ( ) A B C D 答案: A ( ) A B - C D 答案: C 在几何体中, 圆锥; 正方体; 圆柱; 球; 正四面体中,三视图完全一样的几何是 ( ) A B C D 答案: D 考查由三视图判断几何体;三视图是从物体正面,左面,上面看得到的平面图形;常见的三视图相同的几何体应熟记 圆锥:正视图、左视图相同为等腰三角形,而俯视图为圆 正方体的正视图、左视图、俯视图为全等的正方形 圆柱:正视图、左视图相同为矩形,而俯视图为圆 球的正视图、左视图、俯视图为全等的圆 正四面体:正视图、左视图相同为等腰三角形,而俯视图为矩形 故选择

3、 D 填空题 一物体沿着直线以 v = 2 t + 3 ( t的单位: s, v的单位: m/s)的速度运动,那么该物体在 35s间行进的路程是 米 答案: 已知 ,则 的最小值是 . 答案: 设 X是一个离散型随机变量,其分布列为: X -1 0 1 P 0.5 1-2q 则 q= 答案: 甲,乙,丙三家公司承包 6项工程,甲承包 3项,乙承包 2项,丙承包 1项,不同的承包方案共有 种 答案: 已知向量 , , ,若 ,则 = 答案: 解答题 在 中,角 A,B,C 所对的边分别是 a,b,c,且 abc.设向量=(cosB,sinB), 为单位向量。 ( 1)求角 B的大小, ( 2)若

4、 ABC的面积 答案: 已知二项式 的展开式中各项系数和为 64 ( )求 ; ( )求展开式中的常数项 答案:解: 令 ,则展开式中各项系数和为 , 解得 该二项展开式中的第 项为 , 令 ,则 , 此时,常数项为 如图,四棱锥 P-ABCD中, AD BC, ADC= , PC 平面 ABCD,点 E为 AB中点。 AC DE, 其中 AD=1, PC=2, CD= ; ( 1)求异面直线 DE与 PB所成角的余弦值; ( 2)求直线 PC与平面 PDE所成角的余弦值。答案: 解:( 1)如图建立空间坐标系 设 BC= ,则 A( 1, , 0), D( 0, , 0) B( , 0, 0

5、), E( , , 0), ( 0, 0, 2) ( 1, , 0), ( , , AC DE E( , , 0) 所以 所以直线 DE与 PB所成角的余弦值为 ; ( 2)设平面 PDE的一个法向量 ( , , ) , , -2), ( , , , 令 ,得 , 所以 ( , , ) 设直线 PC与平面 PDE所成的角为 ( 0, 0, 2) , = . 某重点高校数学教育专业的三位毕业生甲,乙,丙参加了一所中学的招聘面试,面试合格者可以正式签约,毕业生甲表示只要面试合格就签约,毕业生乙和丙则约定:两人面试合格就一同签约,否则两人都不签约,设每人面试合格的概率都是 ,且面试是否合格互不影响,

6、求:( 1)至少有 1人面试合格的概率;( 2)签约人数 X的分布列及数学期望。 答案:解( 1)至少有 1人面试合格的概率为 . 所以 X的分布列为: X 0 1 2 3 P 所 . 已知函数 , 为实数,( ) ( )若 ,求函数 的极值; ( )若 ,且函数 有三个不同的零点,求实数 的取值范围 答案:当 2 分 令 ,得 ,或 且 , 4 分 ( )( 1)当 时, 当 变化时, 、 的变化情况如下表: 0 0 - 0 当 时,在 处,函数 有极大值 ;在 处,函数 有极小值 8 分 ( 2)当 a 0时, 2a 0 当 变化时, 、 的变化情况如下表: 相关试题 免责声明 联系我们

7、地址:深圳市龙岗区横岗街道深峰路 3号启航商务大厦 5楼 邮编:518000 2004-2016 21世纪教育网 粤ICP备09188801号 粤教信息 (2013)2号 工作时间 : AM9:00-PM6:00 服务电话 : 4006379991 如图,在平面直角坐标系 中,过 轴正方向上一点 任作一直线,与抛物线 相交于 两点一条垂直于 轴的直线,分别与线段 和直线 交于点 ( 1)若 ,求 的值; ( 2)若 为线段 的中点,求证: 为此抛物线的切线; ( 3)试问( 2)的逆命题是否成立?说明理由 答案:解:( 1)设直线 的方程为 , 将该方程代入 得 令 , ,则 因为 ,解得 , 或 (舍去)故 ( 2)由题意知 ,直线 的斜率为 又 的导数为 ,所以点 处切线的斜率为 , 因此, 为该抛物线的切线 ( 3)( 2)的逆命题成立,证明如下: 设 若 为该抛物线的切线,则 , 又直线 的斜率为 ,所以 , 得 ,因 ,有 故点 的横坐标为 ,即 点是线段 的中点

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 考试资料 > 中学考试

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1