2012-2013学年安徽省宿州市泗县二中高一下学期第五次月考物理试卷与答案(带解析).doc

上传人:bonesoil321 文档编号:325098 上传时间:2019-07-09 格式:DOC 页数:16 大小:549.17KB
下载 相关 举报
2012-2013学年安徽省宿州市泗县二中高一下学期第五次月考物理试卷与答案(带解析).doc_第1页
第1页 / 共16页
2012-2013学年安徽省宿州市泗县二中高一下学期第五次月考物理试卷与答案(带解析).doc_第2页
第2页 / 共16页
2012-2013学年安徽省宿州市泗县二中高一下学期第五次月考物理试卷与答案(带解析).doc_第3页
第3页 / 共16页
2012-2013学年安徽省宿州市泗县二中高一下学期第五次月考物理试卷与答案(带解析).doc_第4页
第4页 / 共16页
2012-2013学年安徽省宿州市泗县二中高一下学期第五次月考物理试卷与答案(带解析).doc_第5页
第5页 / 共16页
点击查看更多>>
资源描述

1、2012-2013学年安徽省宿州市泗县二中高一下学期第五次月考物理试卷与答案(带解析) 选择题 “天宫一号 ”和 “神舟八号 ”绕地球做匀速圆周运动的示意图如图所示, A代表 “天宫一号 ”, B代表 “神舟八号 ”,虚线为各自的轨道。可以判定 A “天宫一号 ”的运行速率大于 “神舟八号 ”的运行速率 B “天宫一号 ”的周期小于 “神舟八号 ”的周期 C “天宫一号 ”的向心加速度大于 “神舟八号 ”的向心加速度 D “神舟八号 ”适度加速有可能与 “天宫一号 ”实现对接 答案: D 试题分析:根据 “天宫一号 ”和 “神舟八号 ”绕地球做匀速圆周运动,由万有引力提供向心力: 得: , M

2、为地球的质量, r为轨道半径由于 “天宫一号 ”的轨道半径大于 “神舟八号 ”的轨道半径,所以 “天宫一号 ”的运行速率小于 “神舟八号 ”的运行速率故 A错误;根据 “天宫一号 ”和 “神舟八号 ”绕地球做匀速圆周运动,由万有引力提供向心力: 解得 , M为地球的质量, r为轨道半径由于 “天宫一号 ”的轨道半径大于 “神舟八号 ”的轨道半径,所以 “天宫一号 ”的周期大于 “神舟八号 ”的周期故 B错误根据 “天宫一号 ”和 “神舟八号 ”绕地球做匀速圆周运动,由万有引力提供向心力: 得: 由 于 “天宫一号 ”的轨道半径大于 “神舟八号 ”的轨道半径,所以 “天宫一号 ”的向心加速度小于

3、 “神舟八号 ”的向心加速度,故 C错误 “神舟八号 ”从图示轨道运动到与 “天宫一号 ”对接过程中,需要点火加速,逃逸到天宫一号轨道对接, D正确 考点:考查万有引力定律及其应用 点评:本题难度较小 , 向心力的公式选取要根据题目提供的已知物理量或所求解的物理量选取应用要比较一个物理量大小,我们应该把这个物理量先表示出来,在进行比较 宇宙中存在一些质量相等且离其他恒星较远的四颗星组成的四星系统,通常可忽略其他星体对它们的引力作用。设四 星系统中每个星体的质量均为 m,半径均为 R,四颗星稳定分布在边长为 a的正方形的四个顶点上已知引力常量为 G关于四星系统,下列说法错误的是 A四颗星围绕正方

4、形对角线的交点做匀速圆周运动 B四颗星的轨道半径均为 C四颗星表面的重力加速度均为 D四颗星的周期均为 答案: BCD 试题分析:四颗星之间的万有引力提供其做圆周运动的向心力,所以四颗星围绕正方形对角线的交点做匀速圆周运动; 轨道半径显然就是 ;重力加速度公式: ;根据题目可知 ,每个恒星周期均为。所以说法错误的是 BCD 考点:考查万有引力定律 点评:本题难度中等,注意万有引力公式中的距离 r和圆周运动中半径 R的不同 在如图所示的倾角为 的光滑斜面上,存在着两个磁感应强度大小为 B的匀强磁场,区域 I的磁场方向垂直斜面向上,区域 的磁场方向垂直斜面向下,磁场的宽度均为L,一个质量为 m、电

5、阻为 R、边长也为 L的正方形导线框,由静止开始沿斜面下滑,t1时 ab边刚越过 GH进入磁场 区,此时线框恰好以速度 v1做匀速直线运动; t2时 ab边下滑到 JP与 MN的中间位置,此时线框又恰好以速度 v2做匀速直线运动。重力加速度为 g,下列说法中正确的有: ( ) A t1时,线框具有加速度 a=3gsin B线框两次匀速直线运动的速度 v1: v2=2:1 C从 t1到 t2过程中,线框克服安培力做功的大小等于重力势能的减少量 D从 t1到 t2,有机械能转化为电能 答案: D 试题分析: t1时,线 框恰好以速度 v1做匀速直线运动,加速度等于零, A错; t1时因线框做匀速直

6、线运动得到 , ,t2时 ,联立得 v1: v2=4:1, B错;从 t1到 t2过程中,线框克服安培力做功的大小等于重力势能的减少量加动能的减小量, C错;从 t1到 t2,重力势能的减少量 ,动能的减小量 ,所以转化的电能为 , D对,故选 D 考点:考查能量守恒 点评:本题难度 中等,学生清楚安培力一定阻碍导体的运动,导体克服安培力做的功转化为电能,可用功能关系去分析 如图所示,一个质量为 m的圆环套在一根固定的水平直杆上,环与杆的动摩擦因数为 ,现给环一个向右的初速度 v0,如果在运动过程中还受到一个方向始终竖直向上的力 F的作用,已知力 F的大小 F kv(k为常数, v为环的运动速

7、度 ),则环在整个运动过程中克服摩擦力所做的功 (假设杆足够长 )可能为( ) 答案: ACD 试题分析:如果重力等于 F则物体做匀速直线运动摩擦力为 0不做功 C对,如果受摩擦力则做减速运动,若支持力方向向上速度最终减为 0则克服摩擦力做功 ,则A对,若支持力方向向下则重力跟 F相等时摩擦力为 0物体做匀速运动末速度为 V,mg=kv所以 克服摩擦力做功为 - ,则 D对,故选 ACD 考点:考查动能定理 点评:本题难度较小,小环能做什么运动主要看 F和重力的大小关系 足够长的粗糙斜面上,用力推着一物体沿斜面向上运动, 时撤去推力, 0-6s内速度随时间的变化情况如图所示,由图像可知( )

8、A 0 1s内重力的平均功率大小与 1 6s内重力平均功率大小之比为 5 1 B 0 l s内摩擦力的平均功率与 1 6s内摩擦力平均功率之比为 1 1 C 0 1s内机械能变化量大小与 1 6s内机械能变化量大小之比为 1 5 D 1 6s内动能变化量大小与机械能变化量大小之比为 1 3 答案: BC 试题分析:速度时间图像的面积表示位移大小,因此 0 1s内物体发生的位移大小与1 6s内发生的位移大小之比为 1:5,选项 A错误;在 0-1s内物体向上匀减速直线运动,加速度为 10m/s2,由牛顿第二定律 ,当速度减小到零后物体沿斜面向下加速运动,加速度为 2m/s2, ,两个公式联立可求

9、得重力沿斜面向下的分力为 6m,摩擦力为 4m,平均功率 P=Fv其中 v为平均速度,所以在 01s内重力的平均功率大小与 1 6s内重力平均功率大小之比为平均速度之比为 1:1,选项 B正确;同理 C对;机械能的变化根据除了重力以外其他力做功来判断,所以在0 1s内与 1 6s内位移之比等于面积之比,为 1:5,克服摩擦力做功为 1:5,选项 D错误;故选 BC 考点:考查功能关系 点评:本题难度较小,明确图像类型,图像的面积表示位移大小,除了重力以外其他力做功表示机械能的变化 如图甲所示,足够长的固定光滑细杆与地面成一定倾角,在杆上套有一个光滑小环。现在沿杆方向给小环施加一个拉力 F,使小

10、环由静止开始运动。已知拉力 F及 小环速度 v随时间 t变化的规律如图乙所示,重力加速度 g取 10m/s2。则以下判断正确的是( ) A小环的质量是 1kg B细杆与地面间的倾角是 30 C前 3s内拉力 F的最大功率是 2.25W D前 3s内小环机械能的增加量是 5.75 J 答案: AD 试题分析:根据 v-t图像, 1s后物体处于匀速直线运动,即物体处于平衡状态,根据受力分析以及分解: 。在第 1s内, 物体加速度为 ,根据牛顿第二定律则,利用 F-t图像代入数据则: m=1Kg, 。因此根据上述分析 A对, B错。 F的最大功率 P=Fv=5*0.5=2.5W, C错。小环 3s内

11、的位移为梯形面积即 1.25m,所以增加的势能为 mgh=5.625J,末速度为 0.5m/s,所以动能增加 0.125J,所以总机械能增加了 5.75J, D对,故选 AD 考点:考查运动图像、机械能 点评:本题考查了从图象中获取信息的能力。通过 v-t图像求出加速度,并通过 F-t图像得到牛顿第二定律表达式,以图像分析为重点 如图所示,劲度系数为 k的轻弹簧一端固 定在墙上,另一端与置于水平面上质量为 m的物体接触(未连接),弹簧水平且无形变。用水平力 F缓慢推动物体,在弹性限度内弹簧长度被压缩了 x0 ,此时物体静止。撤去 F后,物体开始向左运动,运动的最大距离为 4x0。物体与水平面间

12、的动摩擦因数为 ,重力加速度为 g 。则( ) A撤去 F时,物体的加速度大小为 B撤去 F后,物体先做加速运动,再做减速运动 C物体做匀减速运动的 时间为 D物体在加速过程中克服摩擦力做的功为 答案: ABD 试题分析:撤去 F后,在物体离开弹簧的过程中,弹簧弹力是变力,由受力分析可知,物体先做加速度减小的加速运动,当弹簧弹力减小到与滑动摩擦力相等时,速度达到最大,然后做加速度反向增大的减速运动,随即离弹簧再做匀减速运动直至停止。也即经历了变加速、变减速、匀减速三种运动情况,当撤去推力 F的瞬间,由牛顿第二定律可知 ,选项正确;同理选项 B正确;做匀减速运动是从 弹簧恢复原长开始的,也可考虑

13、为反向的匀加速直线运动,由位移公式 得 ,选项 C正确;当弹簧恢复原长时: ,故弹力做功为: 即 ,即弹簧的弹性势能为 ,所以 F对其做功为 ,速度最大时合力为零,此时弹簧弹力,所以物体开始向左运动到速度最大的过程中克服摩擦力做的功为 , D正确;故选 ABD 考点:考查了动能定理的应用 点评:本题难度较大,解答该题的关键在于做好受力分析,识别运动过程以及找准平衡位置。由于弹簧的力是变力,分析物体得运动过程,增加了难度 如图所示,小车上有一定滑轮,跨过定滑轮的绳上一端系一重球,另一端系在弹簧秤上,弹簧秤固定在小车上开始时小车处在静止状态当小车匀加速向右运动时 A弹簧秤读数及小车对地面压力均增大

14、 B弹簧秤读数及小车对地 面压力均变小 C弹簧秤读数变大,小车对地面的压力不变 D弹簧秤读数不变,小车对地面的压力变大 答案: C 试题分析:开始时小车处于静止状态,小球受重力 mg、绳的拉力 ,由于小球静止,因此 ,当小车匀加速向右运动稳定时,小球也向右匀加速运动小球受力如图: 由于小球向右做匀加速运动,所以小球的加速度水平向右,根据牛顿第二定律小球的合力也水平向右,根据力图几何关系得出:此时绳子的拉力 ,所以绳中拉力变大,弹簧秤读数变大对整体进行受力分析:开始时小车处于静止状态,整体所受地面的支持力等于本身重力当小车匀加速向右运动稳定时,整体在竖直方向无加速度,也就是整体在竖直方向出于平衡

15、状态,所以整体所受地面的支持力仍然等于本身重力,故选 C 考点:考查牛顿第二定律 点评:本题难度较小,处理连接体问题通常选用整体隔离法 如图所示,质量不计的弹簧竖直固定在水平面上, t=0时刻,将一金属小球从弹簧正上方某一高度处由静止释放,小球接触弹簧并将弹簧压缩至最低点 (形变在弹性限度内 ),然后又被弹起离开弹簧,上升到一定高度 后又下落,如此反复。通过安装在弹簧下端的压力传感器,测出该过程中弹簧弹力 F随时间 t变化的图像如图所示,则( ) A运动过程中小球的机械能守恒 B t2时刻小球的加速度为零 C t1 t2这段时间内,小球的动能在逐渐减小 D t2 t3这段时间内,小球的动能与重

16、力势能之和在增加 答案: D 试题分析:小球先自由下落,与弹簧接触后,弹簧被压缩,在下降的过程中,弹力不断变大,当弹力小于重力时,物体加速下降,但合力变小,加速度变小,故 做加速度减小的加速运动,当加速度减为零时,速度达到最大,之后物体由于惯性继续下降,弹力变的大于重力,合力变为向上且不断变大,故加速度向上且不断变大,故物体做加速度不断增大的减速运动;同理,上升过程,先做加速度不断不断减小的加速运动,当加速度减为零时,速度达到最大,之后做加速度不断增大的减速运动,直到小球离开弹簧为止,运动过程中小球受到弹力作用,机械能不守恒,选项A错误; t2时刻弹力最大,加速度向上,不为零,选项 B错误;

17、t1 t2这段时间内,小球速度先增大后减小,选项 C错误; t2 t3这段时间内,弹簧弹性势能 减小,由能量守恒可知小球的动能与重力势能之和在增加,选项 D正确;故选 D 考点:考查牛顿第二定律的应用 点评:本题难度较小,本题关键要将小球的运动分为自由下落过程、向下的加速和减速过程、向上的加速和减速过程进行分析处理,同时要能结合图象分析 如图所示,一个物体在与水平方向成 角的拉力 F的作用下匀速前进了时间 t,则( ) A拉力对物体的冲量为 Ft B拉力对物体的冲量为 Ftcos C摩擦力对物体的冲量为 Ft D合外力对物体 的冲量为 Ft 答案: A 试题分析:由物体做匀速直线运动,分析物体

18、的受力情况可知:摩擦力 , 拉力对物体的冲量为 I=Ft, A正确, B错误, 摩擦力对物体的冲量为: , C错误 ; 合力为零,所以冲量为零, D错误;故选 A 考点:考查动量定理 点评:本题难度较小,对于恒力的冲量可以利用 I=Ft求得,对于变力的冲量可以借助动量定理求解 自由下落的物体,其动能与位移的关系如图所 示。则图中直线的斜率表示该物体的 A质量 B机械能 C重力大小 D重力加速度 答案: C 试题分析:自由下落的物体,只受重力,根据动能定理得: ,则图中斜率k=mg,故选 C 考点:考查动能定理的应用 点评:本题难度较小,明确图线斜率的物理意义是关键 随着人们生活水平的提高,高尔

19、夫球将逐渐成为普通人的休闲娱乐如图所示,某人从高出水平地面 h的坡上水平击出一个质量为 m的高尔夫球由于恒定的水平风力的作用,高尔夫球竖直地落入距击球点水平距离为 L的 A穴则 A球被击出后做平抛运动 B该球从被击出到落入 A穴所 用的时间为 C球被击出时的初速度大小为 D球被击出后受到的水平风力的大小为 mgh/L 答案: BC 试题分析:由于水平方向受到空气阻力,不是平抛运动,故 A错误;竖直方向为自由落体运动,由 ,得到 ,故 B正确;由于球竖直地落入 A穴,故水平方向为末速度为零匀减速直线运动,根据运动学公式,有 解得 ,故 C正确;水平方向分运动为末速度为零匀减速直线运动,由运动学公

20、式 由牛顿第二定律 F=ma由上述各式可解得 , D错误 ,故选 BC 考点:考查牛顿第二定律;平抛运动;运动的合成和分解 点评:本题难度较小 , 本题关键将实际运动分解为水平方向的匀减速直线运动和竖直方向的自由落体运动,根据运动学公式和牛顿第二定律列式求解 实验题 卫星绕地球做匀速圆周运动时处于完全失重状态,在这种环境中无法用天平称量物体的质量。于是某同学在这种环境设计了如图所示的装置(图中 O为光滑的小孔)来间接测量物体的质量:给待测物体一个初速度,使它在桌面上做匀速圆周运动。设航天器中 具有基本测量工具(弹簧秤、秒表、刻度尺)。 ( 1)物体与桌面间没有摩擦力,原因是 ; ( 2)实验时

21、需要测量的物理量是 ; ( 3)待测质量的表达式为 m= 。 答案: (1) 物体对桌面无压力 (2) 弹力大小:作圆周的周期和半径 (3) m=FT2/42R 试题分析: (1)由于处于完全失重状态,小物块与桌面间无压力,小物块在桌面上转动不受摩擦力作用 (2)小物块做圆周运动的半径 r、周期 T(或 t时间内的转数 n)和弹簧测力计的示数 F. (3)由于弹簧测力计的示数 F为对小物块的拉力大小,该力提供向心力,由公式, 可得, 考点:考查圆周运动和完全失重 点评:本题难度较小,由于处于完全失重状态,小物块与桌面间无压力,小物块在桌面上转动不受摩擦力作用于弹簧测力计的示数 F为对小物块的拉

22、力大小,该力提供向心力 如图所示为一小球做平抛运动的闪光照片的一部分,图中方格的边长为 5cm,如果取 g 10m/s2,那么 ( 1)闪光频率是 z. ( 2)小球运动的水平分速度为 m/s. ( 3)小球经过点时速度的大小为 m/s. 答案:( 1) ( 2) v0=0.75m/s( 3) 试题分析:根据 A、 B、 C三点水平间隔相同,运动时间也相同,竖直方向有可求出时间间隔及闪光周期为 0.1s,频率为 10Hz,由水平方向匀速可求出水平分速度, B点竖直分速度为 AC竖直距离的平均速度,再由勾股定理求合速度 考点:考查平抛运动实验 点评:本题难度较小,由水平方 向间距相同可判断时间相

23、同,根据竖直方向规律求解 计算题 如图为火车站装载货物的原理示意图,设 AB段是距水平传送带装置高为 H=5m的光 滑斜面,水平段 BC使用水平传送带装置, BC长 L=8m,与货物包的摩擦系数为 =0.6,皮带轮的半径为 R=0.2m,上部距车厢底水平面的高度 h=0.45m。设货物由静止开始从 A点下滑,经过 B点的拐角处无能量损失。通过调整皮带轮(不打滑)的转动角速度 可使货物经 C点抛出后落在车厢上的不同位置,取 g=10m/s2,求: ( 1)当皮带轮静止时,货物包在车厢内的落地点到 C点的水平距离; ( 2)当皮带轮以角速度 =20 rad/s顺时方针方向匀速转动时,包在车厢内的落

24、地点到 C点的水平距离; ( 3)讨论货物包在车厢内的落地点到 C点的水平距离 S与皮带轮沿顺时方针方向转动的角速度 间的关系。 答案:( 1) ( 2) ( 3)见 试题分析:( 1) ( 2) ( 3) 皮带轮逆时针方向转动: S=0.6m 皮带轮顺时针方向转动时: 、 010 rad/s时, S=0.6m 、 10 50 rad/s时, S= R=0.06 、 50 70 rad/s时, S= R=0.06 、 70 rad/s时, S= 4.2m 考点:考查圆周运动与平抛运动 点评:本题难度中等,由传动带与物体的速度大小,或相对速度大小判断摩擦力方向,判 断平抛运动初速度方向 如图所示

25、,半径为 R的 1/4光滑圆弧轨道最低点 D与水平面相切,在 D点右侧 L0=4R处用长为 R的细绳将质量为 m的小球 B(可视为质点)悬挂于 O点,小球 B的下端恰好与水平面接触,质量为 m的小球 A(可视为质点)自圆弧轨道 C的正上方 H高处由静止释放,恰好从圆弧轨道的 C点切入圆弧轨道,已知小球 A与水平面间的动摩擦因数 =0.5,细绳的最大张力 Fm=7mg,重力加速度为 g,试求: ( 1)若 H=R,小球 A到达圆弧轨道最低点 D时 所受轨道的支持力; ( 2)试讨论 H在什么范围内,小球 A与 B发生弹性碰撞后细绳始终处于拉直状态。 答案:( 1) 5mg( 2)或者 试题分析:

26、( 1)设小球 A运动到圆弧轨道最低点 D时速度为 v0,则由机械能守恒定律有: 圆弧轨道最低点有: 解得: N=5mg ( 2)设 A与 B碰前速度为 vA,碰后 A的速度为 , B的速度为 ,则 A在水平面上滑行过程有: A与 B碰撞过程有: 若碰后 B能在竖直平面内做完整的圆周运动,则细绳始终处于拉直状态,设小球 B 最高 处速度为 ,则在最高处有: 小球 B从最低点到最高点有: 小球 B在最低点时细绳受力最大,则有: 联立 解得: 若 A与 B碰后 B摆动的最大高度小于 R,则细绳始终处于拉直状态,则 根据机械能守恒有: 要保证 A与 B能发生碰撞,则 联立 解得: 考点:考查机械能守

27、恒定律、向心力 点评:本题难度较大,本题运算过程较复杂,通过向心力公式求绳子拉力,并通过机械能守恒定律结合 “发生弹性碰撞后细绳始终处于拉直状态 ”的具体要求列式求解,本题数学要求较高 如图所示,在光滑的水平地面上,静止着质量为 M =2.0kg的小车 A,小车的上表面距离地面的高度为 0.8m,小车 A的左端叠放着一个质量为 m=1.0kg的小物块 B(可视为质点)处于静止状态,小物块与小车上表面之间的动摩擦因数 =0.20。在小车 A的左端正上方,用长为 R=1.6m的不可伸长的轻绳将质量为 m =1.0kg的小球 C悬于固定点 O点。现将小球 C拉至使轻绳拉直且与竖起方向成 =60角的位

28、置由静止释放,到达 O点的正下方时,小球 C与 B发生弹性正碰(碰撞中无机械能损失),小物块从小车右端离开时车的速度为 1m/s,空气阻力不计,取 g=10m/s2 求: ( 1)小车上表面的长度 L是多少 ( 2)小物块落地时距小车右端的水平距离是多少 答案: 试题分析:( 1)静止释放后小球做圆周运动到最低点过程,由机械能守恒定律得 ( 2分) 解得 v=4m/s ( 1分) 小球 C与 B碰撞过程中动量守恒和机械能保持不变,则 ( 1分) ( 1分) 解得: ( 1分) B在小车 A上滑动,系统动量守恒,设 B滑到 A最右端时速度为 v3,车速为 v4则 ( 2分) B在小车 A上滑动的

29、过程中,系统减小的机械能转化为内能,由能量守恒定律得 ( 2分) 联立解得: ( 2分) (2)滑块离开 A后将做平抛运动, ( 1分) 小滑块到地面所需的时间 t=0.4s 对应的小物块水平位移 小车滑行的位移 小物块距小车右端的水平距离 ( 1分) 考点:考查的是对动量守恒问题与机械能守恒的问题的应用问题 点评:本题难度较大,根据机械能守恒定律和动量守恒定律可以计算小球和滑块的速度,再利用能量守恒可以计算 机械能的损失即摩擦力做功,再利用平抛运动的规律计算出水平距离 如图所示,在倾角 30o的斜面上放置一段凹槽 B, B与斜面间的动摩擦因数 ,槽内靠近右侧壁处有一小物块 A(可视为质点 )

30、,它到凹槽左侧壁的距离 d 0.10m。 A、 B的质量都为 m=2.0kg, B与斜面间的最大静摩擦力可认为等于滑动摩擦力,不计 A、 B之间的摩擦,斜面足够长。现同时由静止释放 A、 B,经过一段时间, A与 B的侧壁发生碰撞,碰撞过程不计机械能损失,碰撞时间极短。取 g=10m/s2。求: ( 1)画出凹槽 B运动的速度 v随时间 t的变化图象; ( 2)物块 A与凹槽 B的左侧壁第 n次碰撞后瞬间 A、 B的速度大小; ( 3)从初始位置到物块 A与凹槽 B的左侧壁发生第 n次碰撞时 B的位移大小。 答案:( 1)( 2) vAn=(n-1)m s-1, vBn=n m s-1( 3)

31、 xn总 =0.2n2m 试题分析:( 1)槽所受的最大静摩擦力等于重力沿斜面的分力,所以物块释放后,槽处于静止,物块做匀加速直线运动,根据位移时间公式求出小球与槽壁第一次发生碰撞时所需的时间 ( 2)物块和槽发生碰撞的前后瞬间 ,动量守恒,能量守恒,根据动量守恒定律和能量守恒定律求出槽和小球的速度 ( 3)第一次碰撞后,槽做匀速运动,物块做匀加速运动,在运动的过程中,开始时槽的速度大于球的速度,物块与 A壁的距离越来越大,速度相等时,物块到侧壁 B的距离最大,判断此时是否与 A壁相碰,若没相碰,此后的物块与 A壁的距离越来越小,抓住位移相等,求出追及的时间 解:( 1) A在凹槽内, B受到

32、的滑动摩擦力 B所受重力沿斜面的分力 因为 ,所以 B受力平衡,释放后 B保持静止 释放 A后, A做匀加速运动,由牛顿定律和运动学规律得 解得 A的加速度和碰撞前的速度分别为: B发生碰撞时运动的时间: , 动量守恒 碰撞过程不损失机械能,得 解得第一次发生碰撞后瞬间 A、 B的速度分别 (方向沿斜面向下) 之后 B匀速运动, A加速运动, A、 B第一次碰撞后, B做匀速运动 A做匀加速运动,加速度仍为 a1 经过时间 t1, A的速度与 B相等, A与 B的左侧壁距离达到最大,即 代入数据解得 A与 B左侧壁的距离 s=0.10m 因为 s=d, A恰好运动到 B的右侧壁,而且速度相等,

33、所以 A与 B的右侧壁恰好接 触但没有发生碰撞。再次相碰的时间为: ,得到: t=0.4s,此时 A的速度为: 动量守恒 碰撞过程不损失机械能,得 解得: (方向沿斜面向下) 同理可以求出: (方向沿斜面向下) ( 2)由以上分析可知:物块 A与凹槽 B的左侧壁第 n次碰撞后瞬间 A、 B的速度大小分别为: vAn=(n-1)m s-1, vBn=n m s-1 ( 3)由以上分析可知:从初始位置到物块 A与凹槽 B的左侧壁发生第 n次碰撞时 B的位移大小: 考点:考查力学综合问题 点评:本题难度较大 , 本题综合运用了牛顿第二定律、动量守恒定律和能量守恒定律,综合性较强,关键是理清球与槽的运动情况,选择合适的规律进行求解 ,对运动过程的把握要强 ,选择合适的知识点求解也非常关键

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 考试资料 > 中学考试

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1