ANSI ASTM D2925-2014 Standard Test Method for Beam Deflection of Fiberglass (Glass-Fiber-Reinforced Thermosetting Resin) Pipe Under Full Bore Flow.pdf

上传人:sofeeling205 文档编号:432314 上传时间:2018-11-11 格式:PDF 页数:4 大小:116.88KB
下载 相关 举报
ANSI ASTM D2925-2014 Standard Test Method for Beam Deflection of Fiberglass (Glass-Fiber-Reinforced Thermosetting Resin) Pipe Under Full Bore Flow.pdf_第1页
第1页 / 共4页
ANSI ASTM D2925-2014 Standard Test Method for Beam Deflection of Fiberglass (Glass-Fiber-Reinforced Thermosetting Resin) Pipe Under Full Bore Flow.pdf_第2页
第2页 / 共4页
ANSI ASTM D2925-2014 Standard Test Method for Beam Deflection of Fiberglass (Glass-Fiber-Reinforced Thermosetting Resin) Pipe Under Full Bore Flow.pdf_第3页
第3页 / 共4页
ANSI ASTM D2925-2014 Standard Test Method for Beam Deflection of Fiberglass (Glass-Fiber-Reinforced Thermosetting Resin) Pipe Under Full Bore Flow.pdf_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、Designation: D2925 14 An American National StandardStandard Test Method forBeam Deflection of “Fiberglass” (Glass-Fiber-ReinforcedThermosetting Resin) Pipe Under Full Bore Flow1This standard is issued under the fixed designation D2925; the number immediately following the designation indicates the y

2、ear oforiginal adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope*1.1 This test method covers measurement of the deflectio

3、nas a function of time of a specimen of fiberglass pipe supportedon a flat non-arced support as a simple beam under full boreflow of water at elevated temperatures. Both glass-fiber-reinforced thermosetting-resin pipe (RTRP) and glass-fiber-reinforced polymer mortar pipe (RPMP) are fiberglass pipes.

4、NOTE 1For the purposes of this standard, polymer does not includenatural polymers.1.2 This test method can be used to determine deflection atvarying conditions by substituting other test media.1.3 Deflections observed using this test method are repre-sentative only of piping supported as a simple be

5、am under fullbore flow which has one diameter of pipe overhanging at eachsupport.1.4 The values stated in SI units are to be regarded as thestandard. The values given in parentheses are provided forinformation purposes only.NOTE 2There is no known ISO equivalent to this standard.1.5 This standard do

6、es not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Sta

7、ndards:2C33 Specification for Concrete AggregatesD883 Terminology Relating to PlasticsD1600 Terminology forAbbreviated Terms Relating to Plas-ticsD3567 Practice for Determining Dimensions of “Fiberglass”(Glass-Fiber-Reinforced Thermosetting Resin) Pipe andFittingsF412 Terminology Relating to Plastic

8、 Piping Systems3. Terminology3.1 GeneralDefinitions are in accordance with Terminolo-gies D883 and F412 and abbreviations are in accordance withTerminology D1600, unless otherwise indicated.3.2 Definitions of Terms Specific to This Standard:3.2.1 aggregatea siliceous sand conforming to the re-quirem

9、ents of Specification C33, except that the requirementsfor gradation shall not apply.3.2.2 fiberglass pipea tubular product containing glassfiber reinforcement embedded in or surrounded by curedthermosetting resin; the composite structure may containaggregate, granular or platelet fillers, thixotrop

10、ic agents,pigments, or dyes; thermoplastic or thermosetting liners maybe included.3.2.3 reinforced thermosetting resin pipe (RTRP)a fiber-glass pipe without aggregate.3.2.4 reinforced polymer mortar pipe (RPMP)a fiberglasspipe with aggregate.4. Significance and Use4.1 In the absence of deflection me

11、asurements from actualinstalled-above-ground piping, this test method may be used toevaluate the influence of span length on mid-span deflections atdiffering temperatures under full bore flow.NOTE 3A flat bearing area, small contact area, and narrow bearingwidth may induce high localized support int

12、eraction stresses, and con-straints imposed by the supports may also adversely influence deflectionsand performance of the pipe.5. Apparatus5.1 Rigid Support with edges rounded to a 6-mm (14-in.)radius, consisting of two uprights of a convenient height. Theuprights are to be spaced at a predetermine

13、d distance overwhich deflection is to be determined as shown on Fig. 1. Theuprights shall have lateral guides, a saddle, groove, or inden-tation on the top to keep the pipe specimen from rolling offwhen placed in position.1This test method is under the jurisdiction ofASTM Committee D20 on Plasticsan

14、d is the direct responsibility of Subcommittee D20.23 on Reinforced PlasticPiping Systems and Chemical Equipment.Current edition approved Aug. 1, 2014. Published August 2014. Originallyapproved in 1970. Last previous edition approved in 2007 as D2925 01 (2007)1.DOI: 10.1520/D2925-14.2For referenced

15、ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.*A Summary of Changes section appears at the end of this standardCopyright AS

16、TM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States15.1.1 The support space distance shall be estimated for amaximum allowable sag of 12.7 mm (12 in.) at test conditions.This estimate may be made by solving Eq 1 for L, using y=12.7 mm (12 in.) and as

17、suming an elastic modulus, E=1 000 000 psi, unless a more accurate value is available.5.2 Source of Hot Water and a Feed System maintained atconditions such that when this source is coupled to the pipespecimen and the water is fed into the specimen, the wateremerging from the specimen shall be maint

18、ained continuouslyat the controlled temperature within 62C (3.6F). The watershall be fed into the specimen at a head not exceeding 1.5 m(5 ft) and allowed to flow through it under such conditions thatthe pipe specimen is filled with the controlled temperaturewater at all times. Any recirculation sha

19、ll be vented toatmosphere. A schematic drawing of the test setup is shown onFig. 2.FIG. 1 Schematic of Test Specimen SupportFIG. 2 Schematic of Test Set-up for Beam Deflection Test on PipeD2925 1425.3 Flexible Connections for the ends of the pipe testspecimens, installed so as to produce negligible

20、moment on theends of the pipe.5.4 A Device for Measuring the Deflection of the pipespecimen to the nearest 0.025 mm (0.001 in.) with negligibleconstraint on the specimen. A recommended device is acathetometer as shown on Fig. 1.5.5 Time-Interval Measuring Device graduated in minutesor seconds.5.6 Te

21、mperature and Pressure Gages and suitable controldevices to maintain standard test conditions.6. Test Specimens6.1 The test specimens shall be sections of fiberglass pipecut to a precalculated span length plus two pipe diameters 6 13mm (60.5 in.), essentially straight and of a diameter and wallthick

22、ness to be specified.6.2 At least three specimens shall be tested for any givenpipe size.7. Test Temperature7.1 The test temperature selected should be the maximumrecommended service temperature for the piping unless it isdesired to test the effects of temperature variation.8. Procedure8.1 Measure t

23、he total wall thickness, liner thickness, anddiameter of the pipe specimen in accordance with PracticeD3567.8.2 Place the test specimen on the upright supports so thatthere is an overhang of one pipe diameter 613 mm (60.5 in.)on each end.8.3 Connect the test specimen to the water supply and outletsy

24、stem by means of supported flexible connectors.8.4 Fill the pipe test specimen with water at ambienttemperature and determine initial deflection.8.5 Circulate the test media (water) through the test speci-men until a steady-state temperature (see 5.2) is attained at thedesignated test temperature. T

25、hen take the initial elevatedtemperature deflection reading.8.6 Measure the position of the base point and the point ofmaximum deflection at 15-min intervals for 1 h and then at 1-hintervals for 4 h.8.7 Continue to measure the position of the base point andthe point of maximum deflection at suitable

26、 time intervals until1000 h have elapsed or until the total maximum deflectionexceeds the allowable design limit of 12.7 mm (12 in.). If achange of deflection less than 0.025 mm (0.001 in.) occurs intwo consecutive 24-h periods after 1000 h elapsed time, the testmay be terminated. If the change in d

27、eflection is greater than0.025 mm (0.001 in.) in two consecutive 24-h periods after1000 hour elapsed time, the test should be continued until thedesign limit of 12.7 mm (12 in.) is reached or until a change ofdeflection less than 0.025 mm (0.001 in.) occurs in twoconsecutive 24-h periods. Record thi

28、s equilibrium time andmaximum deflection.9. Calculation9.1 Calculate EI values from the data obtained, as follows:3EI 5 22.5wL4/y (1)where:w = combined weight of pipe and fluid at test temperature,lb/ft,L = span length, ft,y = maximum measured deflection, in.,E = apparent elastic modulus of pipe, ps

29、i,I = 0.0491 (D4d4), cross-section moment of inertia ofpipe, in.4,D = average outer diameter of pipe, in., andd = average inner diameter of pipe, in.10. Report10.1 The report shall include the following:10.1.1 Test laboratory and supervisor of tests,10.1.2 Dates of test,10.1.3 Complete identificatio

30、n of the sample, includingmaterial, manufacturer, type, source, and previous history,10.1.4 Pipe dimensions, including nominal pipe size, mini-mum and average wall thickness, liner thickness, and theminimum and average outside diameter of each specimen,10.1.5 Number of specimens tested,10.1.6 Calcul

31、ated weight of pipe filled with water at testtemperature, pounds per foot,10.1.7 Type of support used and dimensions of support(width and saddle radius),10.1.8 Span length between supports used in test,10.1.9 Temperature of inlet and outlet water at equilibrium,10.1.10 Table of deflection in inches

32、versus time in hours,and10.1.11 Calculated EI values.10.1.12 Temperature of environment outside the pipe.11. Precision and Bias11.1 Attempts to develop a precision and bias statement forthis method have not been successful. For this reason, data onprecision and bias cannot be given.412. Keywords12.1

33、 beam deflection; fiberglass pipe; fullbore flow; elasticmodulus3Crocker, Sabin, Piping Handbook, McGraw-Hill Book Co., NY, FourthEdition, 1945, p. 745.4Anyone wishing to participate in the development of precision and bias datashould contact the Chairman, Subcommittee D 20.23,ASTM International, 10

34、0 BarrHarbor Drive, PO Box C700, West Conshohocken, PA, 19428-2959 .D2925 143SUMMARY OF CHANGESCommittee D20 has identified the location of selected changes to this standard since the last issue, D2925 01(2007)1, that may impact the use of this standard.(1) Replaced the term “load” with “moment” in

35、section 5.3.(2) Added requirement (10.1.12) to report temperature condi-tions of test laboratory.ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentionedin this standard. Users of this standard are expressly advised that determi

36、nation of the validity of any such patent rights, and the riskof infringement of such rights, are entirely their own responsibility.This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years andif not revised, either reapproved or wi

37、thdrawn. Your comments are invited either for revision of this standard or for additional standardsand should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of theresponsible technical committee, which you may attend. If you feel that y

38、our comments have not received a fair hearing you shouldmake your views known to the ASTM Committee on Standards, at the address shown below.This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959,United States. Individual reprints (si

39、ngle or multiple copies) of this standard may be obtained by contacting ASTM at the aboveaddress or at 610-832-9585 (phone), 610-832-9555 (fax), or serviceastm.org (e-mail); or through the ASTM website(www.astm.org). Permission rights to photocopy the standard may also be secured from the Copyright Clearance Center, 222Rosewood Drive, Danvers, MA 01923, Tel: (978) 646-2600; http:/ 144

展开阅读全文
相关资源
  • ANSI Z97 1-2009 American National Standard for Safety Glazing Materials used in Buildings - Safety Performance Specifications and Methods of Test《建筑物中窗用玻璃材料安全性用.pdfANSI Z97 1-2009 American National Standard for Safety Glazing Materials used in Buildings - Safety Performance Specifications and Methods of Test《建筑物中窗用玻璃材料安全性用.pdf
  • ANSI Z97 1 ERTA-2010 Re ANSI Z97 1 - 2009 Errata《修订版 美国国家标准学会Z97 1-2009标准的勘误表》.pdfANSI Z97 1 ERTA-2010 Re ANSI Z97 1 - 2009 Errata《修订版 美国国家标准学会Z97 1-2009标准的勘误表》.pdf
  • ANSI Z21 40 2a-1997 Gas-Fired Work Activated Air-Conditioning and Heat Pump Appliances (Same as CGA 2 92a)《燃气、工作激活空气调节和热泵器具(同 CGA 2 92a)》.pdfANSI Z21 40 2a-1997 Gas-Fired Work Activated Air-Conditioning and Heat Pump Appliances (Same as CGA 2 92a)《燃气、工作激活空气调节和热泵器具(同 CGA 2 92a)》.pdf
  • ANSI Z124 9-2004 American National Standard for Plastic Urinal Fixtures《塑料小便器用美国国家标准》.pdfANSI Z124 9-2004 American National Standard for Plastic Urinal Fixtures《塑料小便器用美国国家标准》.pdf
  • ANSI Z124 4-2006 American National Standard for Plastic Water Closet Bowls and Tanks《塑料抽水马桶和水箱用美国国家标准》.pdfANSI Z124 4-2006 American National Standard for Plastic Water Closet Bowls and Tanks《塑料抽水马桶和水箱用美国国家标准》.pdf
  • ANSI Z124 3-2005 American National Standard for Plastic Lavatories《塑料洗脸盆用美国国家标准》.pdfANSI Z124 3-2005 American National Standard for Plastic Lavatories《塑料洗脸盆用美国国家标准》.pdf
  • ANSI T1 659-1996 Telecommunications - Mobility Management Application Protocol (MMAP) RCF-RACF Operations《电信 可移动管理应用协议(MMAP) RCF-RACF操作》.pdfANSI T1 659-1996 Telecommunications - Mobility Management Application Protocol (MMAP) RCF-RACF Operations《电信 可移动管理应用协议(MMAP) RCF-RACF操作》.pdf
  • ANSI T1 651-1996 Telecommunications – Mobility Management Application Protocol (MMAP)《电信 可移动性管理应用协议》.pdfANSI T1 651-1996 Telecommunications – Mobility Management Application Protocol (MMAP)《电信 可移动性管理应用协议》.pdf
  • ANSI T1 609-1999 Interworking between the ISDN User-Network Interface Protocol and the Signalling System Number 7 ISDN User Part《电信 ISDN用户间网络接口协议和7号信令系统ISDN用户部分.pdfANSI T1 609-1999 Interworking between the ISDN User-Network Interface Protocol and the Signalling System Number 7 ISDN User Part《电信 ISDN用户间网络接口协议和7号信令系统ISDN用户部分.pdf
  • ANSI T1 605-1991 Integrated Services Digital Network (ISDN) - Basic Access Interface for S and T Reference Points (Layer 1 Specification)《综合服务数字网络(ISDN) S和T基准点的.pdfANSI T1 605-1991 Integrated Services Digital Network (ISDN) - Basic Access Interface for S and T Reference Points (Layer 1 Specification)《综合服务数字网络(ISDN) S和T基准点的.pdf
  • 猜你喜欢
  • BS PD IEC TS 62763-2013_5284 Pilot function through a control pilot circuit using PWM (pulse width modulation) and a control pilot wire《通过控制导向线使用PWM (脉冲宽度调制) 的导向功能和控制导向线》.pdf BS PD IEC TS 62763-2013_5284 Pilot function through a control pilot circuit using PWM (pulse width modulation) and a control pilot wire《通过控制导向线使用PWM (脉冲宽度调制) 的导向功能和控制导向线》.pdf
  • BS ISO 8070-2007 Milk and milk products - Determination of calcium sodium potassium and magnesium contents - Atomic absorption spectrometric method《牛奶和奶制品 钙、钠、钾和镁含量的测定 原子吸.pdf BS ISO 8070-2007 Milk and milk products - Determination of calcium sodium potassium and magnesium contents - Atomic absorption spectrometric method《牛奶和奶制品 钙、钠、钾和镁含量的测定 原子吸.pdf
  • BS ISO 8082-1-2009 Self-propelled machinery for forestry - Laboratory tests and performance requirements for roll-over protective structures - General machines《林业用自推进机械 防倾.pdf BS ISO 8082-1-2009 Self-propelled machinery for forestry - Laboratory tests and performance requirements for roll-over protective structures - General machines《林业用自推进机械 防倾.pdf
  • BS ISO 8082-2-2011 Self-propelled machinery for forestry Laboratory tests and performance requirements for roll-over protective structures Machines having a rotating platf.pdf BS ISO 8082-2-2011 Self-propelled machinery for forestry Laboratory tests and performance requirements for roll-over protective structures Machines having a rotating platf.pdf
  • BS ISO 8083-2006 Machinery for forestry - Falling-object protective structures (FOPS) - Laboratory tests and performance requirements《林业机械 落体防护装置(FOPS) 实验室试验和性能要求》.pdf BS ISO 8083-2006 Machinery for forestry - Falling-object protective structures (FOPS) - Laboratory tests and performance requirements《林业机械 落体防护装置(FOPS) 实验室试验和性能要求》.pdf
  • BS ISO 8086-2004 Dairy plant - Hygiene conditions - General guidance on inspection and sampling procedures《乳品厂 卫生条件 检验和取样程序通用指南》.pdf BS ISO 8086-2004 Dairy plant - Hygiene conditions - General guidance on inspection and sampling procedures《乳品厂 卫生条件 检验和取样程序通用指南》.pdf
  • BS ISO 8096-2005 Rubber- or plastics-coated fabrics for water resistant clothing - Specification《雨衣用橡胶或塑料涂覆织物 规范》.pdf BS ISO 8096-2005 Rubber- or plastics-coated fabrics for water resistant clothing - Specification《雨衣用橡胶或塑料涂覆织物 规范》.pdf
  • BS ISO 8097-2001 Aircraft Minimum airworthiness requirements and test conditions for certified air cargo unit load devices《航空器 经认证的航空货运集装单元装置最低适航性要求和试验条件》.pdf BS ISO 8097-2001 Aircraft Minimum airworthiness requirements and test conditions for certified air cargo unit load devices《航空器 经认证的航空货运集装单元装置最低适航性要求和试验条件》.pdf
  • BS ISO 8114-1993 Textile machinery and accessories - Spindles for ring-spinning and doubling machines - List of equivalent terms《纺织机械和附件 环锭纺纱机和并线机用锭子 同义术语表》.pdf BS ISO 8114-1993 Textile machinery and accessories - Spindles for ring-spinning and doubling machines - List of equivalent terms《纺织机械和附件 环锭纺纱机和并线机用锭子 同义术语表》.pdf
  • 相关搜索

    当前位置:首页 > 标准规范 > 国际标准 > ANSI

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1