1、Designation: F468M 06 (Reapproved 2018)Standard Specification forNonferrous Bolts, Hex Cap Screws, and Studs for GeneralUse (Metric)1This standard is issued under the fixed designation F468M; the number immediately following the designation indicates the year oforiginal adoption or, in the case of r
2、evision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the U.S. Department of Defense.1. Scope*1.1 This speci
3、fication covers the requirements for commer-cial wrought nonferrous bolts, hex cap screws, and studs innominal thread diameters M6 to M36 inclusive manufacturedfrom a number of alloys in common use and intended forgeneral service applications.1.2 Unless otherwise specified, nuts used on these bolts,
4、 capscrews, and studs shall conform to the requirements of Speci-fication F467M. Nuts shall be of the same alloy group as thefastener on which they are used and shall have a specifiedminimum proof stress equal to or greater than the specifiedminimum tensile strength stress of the fastener on which t
5、heyare used.1.3 The values stated in SI units are to be regarded asstandard. No other units of measurement are included in thisstandard.NOTE 1This specification is the metric companion of SpecificationF468.1.4 This international standard was developed in accor-dance with internationally recognized p
6、rinciples on standard-ization established in the Decision on Principles for theDevelopment of International Standards, Guides and Recom-mendations issued by the World Trade Organization TechnicalBarriers to Trade (TBT) Committee.2. Referenced Documents2.1 ASTM Standards:2B154 Test Method for Mercuro
7、us Nitrate Test for CopperAlloysB193 Test Method for Resistivity of Electrical ConductorMaterialsB211M Specification for Aluminum and Aluminum-AlloyRolled or Cold-Finished Bar, Rod, and Wire (Metric)B565 Test Method for Shear Testing of Aluminum andAluminum-Alloy Rivets and Cold-Heading Wire andRods
8、B574 Specification for Low-Carbon Nickel-Chromium-Molybdenum, Low-Carbon Nickel-Molybdenum-Chromium, Low-Carbon Nickel-Molybdenum-Chromium-Tantalum, Low-Carbon Nickel-Chromium-Molybdenum-Copper, and Low-Carbon Nickel-Chromium-Molybdenum-Tungsten Alloy RodD3951 Practice for Commercial PackagingE8M Te
9、st Methods for Tension Testing of Metallic MaterialsMetric (Withdrawn 2008)3E18 Test Methods for Rockwell Hardness of Metallic Ma-terialsE29 Practice for Using Significant Digits in Test Data toDetermine Conformance with SpecificationsE34 Test Methods for Chemical Analysis of Aluminum andAluminum-Ba
10、se Alloys (Withdrawn 2017)3E38 Methods for Chemical Analysis of Nickel-Chromiumand Nickel-Chromium-Iron Alloys (Withdrawn 1989)3E53 Test Method for Determination of Copper in UnalloyedCopper by GravimetryE54 Test Methods for Chemical Analysis of Special Brassesand Bronzes (Withdrawn 2002)3E55 Practi
11、ce for Sampling Wrought Nonferrous Metals andAlloys for Determination of Chemical CompositionE62 Test Methods for Chemical Analysis of Copper andCopperAlloys (Photometric Methods) (Withdrawn 2010)3E75 Test Methods for Chemical Analysis of Copper-Nickeland Copper-Nickel-Zinc Alloys (Withdrawn 2010)3E
12、76 Test Methods for Chemical Analysis of Nickel-CopperAlloys (Withdrawn 2003)3E92 Test Methods for Vickers Hardness and Knoop Hard-ness of Metallic Materials1This specification is under the jurisdiction of ASTM Committee F16 onFasteners and is the direct responsibility of Subcommittee F16.04 on Nonf
13、errousFasteners.Current edition approved Sept. 1, 2018. Published September 2018. Originallyapproved in 1979. Last previous edition approved in 2012 as F468M 06(2012).DOI: 10.1520/F0468M-06R18.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at se
14、rviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3The last approved version of this historical standard is referenced onwww.astm.org.*A Summary of Changes section appears at the end of this standardCopyright ASTM Inte
15、rnational, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United StatesThis international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for theDevelopment of International Standards,
16、 Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.1E101 Test Method for SpectrographicAnalysis ofAluminumand Aluminum Alloys by the Point-to-Plane Technique(Withdrawn 1996)3E120 Test Methods for Chemical Analysis of Titanium andTitanium Al
17、loys (Withdrawn 2003)3E165 Practice for Liquid Penetrant Examination for GeneralIndustryE227 Test Method for Optical Emission SpectrometricAnalysis of Aluminum and Aluminum Alloys by thePoint-to-Plane Technique (Withdrawn 2002)3E354 Test Methods for Chemical Analysis of High-Temperature, Electrical,
18、 Magnetic, and Other Similar Iron,Nickel, and Cobalt AlloysE478 Test Methods for Chemical Analysis of Copper AlloysE1409 Test Method for Determination of Oxygen and Nitro-gen in Titanium and Titanium Alloys by Inert Gas FusionF467M Specification for Nonferrous Nuts for General Use(Metric)F606/F606M
19、Test Methods for Determining the MechanicalProperties of Externally and Internally ThreadedFasteners, Washers, Direct Tension Indicators, and RivetsF1470 Practice for Fastener Sampling for Specified Me-chanical Properties and Performance Inspection2.2 ASME Standards:4B 1.13M Metric Screw ThreadsB 18
20、.2.3.1M Metric Hex Cap ScrewsB 18.2.3.5M Metric Hex BoltsH 35.1 Alloy and Temper Designation Systems for Alumi-num3. Ordering Information3.1 Orders for fasteners under this specification shall in-clude the following information:3.1.1 Quantity (number of pieces of each item and size);3.1.2 Name of it
21、em. For silicon bronze alloy 651, state ifhex cap screw dimensions or roll thread body diameter arerequired (see 7.1.2);3.1.3 Dimensions including nominal diameter, thread pitch,and length;3.1.4 Alloy number (Table 1). ForTi5, state ClassAor ClassB(Table 2, 6.5, and 6.5.1);3.1.5 Stress relieving, if
22、 required (see 4.2.3),3.1.6 Shipment lot testing, as required (see Section 10);3.1.7 Source inspection, if required (see Section 14);3.1.8 Certificate of compliance or test report, if required(see Section 16);3.1.9 Additional requirements, if any, to be specified on thepurchase order (see 4.2.1, 4.2
23、.4, 7.3.1, 8.2, 11.1, and 12.1);3.1.10 Supplementary Requirements, if any; and3.1.11 ASTM specification and year of issue.NOTE 2A typical ordering description is as follows: 10 000 pieces,Hex Cap Screw, M6180,Alloy 270. Furnish Certificate ofCompliance, Supplementary Requirement S1, ASTM F 468M-XX.4
24、. Materials and Manufacture4.1 Materials:4.1.1 The bolts, cap screws, and studs shall be manufacturedfrom material having a chemical composition conforming tothe requirements in Table 1 and capable of developing therequired mechanical properties for the specified alloy in thefinished fastener. See S
25、pecification B574 for nickel alloys.4.1.2 The starting condition of the raw material shall be atthe discretion of the fastener manufacturer but shall be suchthat the finished products conform to all of the specifiedrequirements.4.2 Manufacture:4.2.1 FormingUnless otherwise specified, the fastenerssh
26、all be cold formed, hot formed, or machined from suitablematerial, at the option of the manufacturer.4.2.2 ConditionExcept as provided in 4.2.3, the fastenersshall be furnished in the following conditions:Alloy ConditionCopper (all alloys): As formed or stress relieved at manufacturers optionNickel
27、alloys:400 and 405 As formed or stress relieved at manufacturers option500 Solution annealed and aged625 AnnealedAluminum alloys:2024-T4 Solution treated and naturally aged6061-T6 Solution treated and artificially aged7075-T73 Solution treated and stabilizedTitanium As formed4.2.3 Stress RelievingWh
28、en required, stress relieving shallbe specified by the purchaser for nickel alloys 400 and 405 andall copper alloys.4.2.4 ThreadsUnless otherwise specified, the threads shallbe rolled or cut at the option of the manufacturer.5. Chemical Composition5.1 Chemical CompositionThe fasteners shall conform
29、tothe requirements as to chemical composition prescribed inTable 1 for the specified alloy.5.2 Manufacturers Analysis:5.2.1 When test reports are required on the inquiry orpurchase order (see 3.1.8), the manufacturer shall make indi-vidual analyses of randomly selected finished fasteners fromthe pro
30、duct to be shipped and report the results to thepurchaser, except as provided in 5.2.2. Alternatively, if heatand lot identities have been maintained, the analysis of the rawmaterial from which the fasteners have been manufactured maybe reported instead of product analysis.5.2.2 For aluminum fastene
31、rs, the manufacturer may furnishinstead a certificate of conformance certifying compliance withthe chemical composition specified in Table 1.5.3 Product Analysis:5.3.1 Product analyses may be made by the purchaser fromfinished products representing each lot. The chemical compo-sition thus determined
32、 shall conform to the requirements inTable 1.5.3.2 In the event of disagreement, a referee chemicalanalysis of samples from each lot shall be made in accordancewith 11.1 and 12.1.4Available from American Society of Mechanical Engineers (ASME), ASMEInternational Headquarters, Two Park Ave., New York,
33、 NY 10016-5990, http:/www.asme.org.F468M 06 (2018)2TABLE1ChemicalRequirementsComposition,%UNSDesigna-tionNumberCopperandCopper-BaseAlloysAlloyGeneralNameAlumi-numCopper,minIron, maxMan-ganese,maxNickel,maxPhos-phorusSiliconZinc, maxALead,maxTinArsenic,maxC11000110ETPcopper.99.9.C26000260brass.68.571
34、.50.05.balance0.07.C27000270brass.63.068.50.07.balance0.10.C46200462navalbrass.62.065.00.10.balance0.200.51.0.C46400464navalbrass.59.062.00.10.balance0.200.51.0.C51000510phosphorbronze.balanceA0.10.0.030.35.0.300.054.25.8.C61300613aluminumbronze6.07.5B2.03.00.100.15C0.0150.100.050.010.200.50.C614006
35、14aluminumbronze6.08.088.0D1.53.51.0.C63000630aluminumbronze9.011.078.0D2.04.01.54.05.5.0.25max.0.20max.C64200642aluminumsiliconbronze6.37.688.65D0.300.100.25.1.52.2E0.500.050.20max0.15C65100651siliconbronze.96.0D0.80.7.0.82.01.50.05.C65500655siliconbronze.94.8D0.81.50.6.2.83.81.50.05.C66100661silic
36、onbronze.94.0D0.251.5.2.83.51.50.200.8.C67500675manganesebronze0.25max57.060.00.82.00.050.5.balance0.200.51.5.C71000710cupro-nickel.74.0D0.601.0019.023.0C.1.000.05.C71500715cupro-nickel.65.0D0.400.71.0029.033.0C.1.000.05.AElementsshownasbalanceshallbearithmeticallycomputedbydeductingthesumoftheother
37、namedelementsfrom100.BCopperplusspecifiedelements=99.8min;copperplussilver=88.591.5.CCobaltistobecountedasnickel.DMinimumcontentofcopperplusallotherelementswithspecifiedlimitsshallbe99.5%.EAnalloycontainingashighas2.6%siliconisacceptableprovidedthesumofalltheelementsotherthancopper,silicon,andirondo
38、esnotexceed0.30%.F468M 06 (2018)3TABLE1ContinuedNickelandNickel-BaseAlloysUNSDesignationNumberAlloyGeneralNameAlumi-numCar- bon, maxChro- miumCopperAIron, maxMan-gan- ese, maxNickelAPhos-phorus,maxSili- con, maxTitaniumCo-balt, maxMolybde-numSulfur,maxVanadiumTung-stenNiobiumN10001335Ni-Mo0.051.0max
39、4.0 6.01.0balance0.0251.002.5026.0 30.00.0300.2 0.4.N10276276Ni-Mo-Cr.0.0214.5 16.54.0 7.01.00balance0.0400.082.5015.0 17.00.0300.35 max3.0 4.5.N04400400Ni-CuClassA.0.3.balance2.52.063.0 70.0.0.5.B.0.024.N04405405Ni-CuClassB.0.3.balance2.52.063.0 70.0.0.5.B.0.025 0.060.N05500500Ni-Cu-Al2.30 3.150.25
40、.balance2.01.563.0 70.0.0.50.350.85B.0.01.N0605959Ni-Cr-Mo0.10.40.010 max22.0 24.00.5 max1.5 max0.5 maxbalance0.015 max0.10 max.0.3max15.0 16.50.010 max.N06625625CNi-Cr-Mo-Cb0.40max0.1020.0 23.0.5.0max0.5058.0 min0.0150.50 max0.40 max1.00 max8.0 10.00.015.3.24.2N06686686Ni-Cr-Mo-W.0.010 max19.0 23.0
41、.5.0max0.75 maxbalance0.04 max0.08 max0.02 0.25.15.0 17.00.02 max.3.0 4.4.AElementsshownasbalanceshallbearithmeticallycomputedbydeductingthesumoftheothernamedelementsfrom100.BCobaltistobecountedasnickel.CAlloy625materialshallberefinedusingtheelectroslagremeltingprocess(ESR),orthevacuumarcremeltingpr
42、ocess(VAR).F468M 06 (2018)4TABLE1ContinuedComposition,%Aluminum-BaseAlloysAUNSDesig-nationNumberAlloyGeneralNameAlumi-numBChro- miumCopperIron, maxManganese,maxSilicon,maxTitanium,maxZinc,maxMagne-siumOtherElements,maxEachTotalA920242024Aluminum2024balance0.10max3.84.90.500.300.90.500.15C0.251.21.80
43、.050.15A960616061Aluminum6061balance0.040.350.150.400.70.150.400.80.150.250.81.20.050.15A970757075Aluminum7075balance0.180.351.22.00.500.300.400.20D5.16.12.12.90.050.15AAnalysisshallregularlybemadeonlyfortheelementsspecifiedinthistable.If,however,thepresenceofotherelementsissuspectedorindicatedinamo
44、untsgreaterthanthespecifiedlimits,furtheranalysisshallbemadetodeterminethattheseelementsarenotpresentinexcessofthespecifiedlimits.BElementsshownasbalanceshallbearithmeticallycomputedbydeductingthesumoftheothernamedelementsfrom100.CTitanium+zirconium0.20%,max.DLead0.40.7%;bismuth0.40.7%.F468M 06 (201
45、8)5TABLE1ContinuedTitaniumandTitanium-BaseAlloysAUNSDes-ignation NumberAlloyGeneralNameAlumi-num,AlCar- bon,CIron,FeTita-nium,TiHydro- gen,HNitro-gen,NOxy- gen,OPalla-dium,PdVana-dium,VChro-mium,CrMolyb-denum,MoZirco-nium,ZrTin,SnSili-con,SiRuthe-nium,RuResidualsBeach,maxtotal,maxR502501TitaniumGr1.
46、0.100.20balance0.01250.050.18.0.10.4R504002TitaniumGr2.0.100.30balance0.01250.050.25.0.10.4R507004TitaniumGr4.0.100.50balance0.01250.070.40.0.10.4R564005CTitaniumGr5C5.56.750.100.40balance0.01250.050.203.54.5.0.10.4R5640123TitaniumTi-6Al-4VELI5.56.50.080.25balance0.01250.050.133.54.5.0.10.4R524007Ti
47、taniumGr70.100.30balance0.01250.050.250.120.25.0.10.4R5864019TitaniumTi-38-6-443.04.00.050.30balance0.02000.030.120.10D7.58.55.56.53.54.53.54.5.0.10D0.150.4R5511132TitaniumTi-5-1-1-14.55.50.080.25balance0.01250.030.11.0.61.4.0.61.20.61.40.61.40.060.14.0.10.4AAllreportedvaluesaremaximums,unlessarange
48、isspecified.BAresidualisanelementpresentinametaloranalloyinsmallquantitiesinherenttothemanufacturingprocessbutnotaddedintentionally.Residualelementsneednotbereportedunlessareportisspecificallyrequiredbythepurchaser.CIdenticalchemicalrequirementsapplytobothClassAandBasdefinedinTable2and6.5.DRutheniumandPalladium,orboth,maybeaddedtoGrade19forenhancedcorrosionresistanceasnegotiatedbetweenpurchaserandvendor.Chemicalanalys