[考研类试卷]MBA联考综合能力数学(古典概率、随机事件的独立性)历年真题试卷汇编1及答案与解析.doc

上传人:testyield361 文档编号:838521 上传时间:2019-02-21 格式:DOC 页数:21 大小:470KB
下载 相关 举报
[考研类试卷]MBA联考综合能力数学(古典概率、随机事件的独立性)历年真题试卷汇编1及答案与解析.doc_第1页
第1页 / 共21页
[考研类试卷]MBA联考综合能力数学(古典概率、随机事件的独立性)历年真题试卷汇编1及答案与解析.doc_第2页
第2页 / 共21页
[考研类试卷]MBA联考综合能力数学(古典概率、随机事件的独立性)历年真题试卷汇编1及答案与解析.doc_第3页
第3页 / 共21页
[考研类试卷]MBA联考综合能力数学(古典概率、随机事件的独立性)历年真题试卷汇编1及答案与解析.doc_第4页
第4页 / 共21页
[考研类试卷]MBA联考综合能力数学(古典概率、随机事件的独立性)历年真题试卷汇编1及答案与解析.doc_第5页
第5页 / 共21页
点击查看更多>>
资源描述

1、MBA 联考综合能力数学(古典概率、随机事件的独立性)历年真题试卷汇编 1 及答案与解析一、问题求解本大题共 15 小题,每小题 3 分,共 45 分。下列每题给出的五个选项中,只有一项是符合试题要求的。1 2015 年 12 月 在分别标记了数字 1、2、3、4、5、6 的 6 张卡片中随机取 3张其上数字之和等于 10 的概率为( )。(A)005(B) 01(C) 015(D)02(E)0252 2015 年 12 月 从 1 到 100 的整数中任取一个数,则该数能被 5 或 7 整除的概率为( )。(A)002(B) 014(C) 02(D)032(E)0343 2014 年 12

2、月 某次网球比赛四强,甲对乙、丙对丁,两场比赛的胜者争夺冠军,各队之间相互获胜的概率为则甲获得冠军的概率为( )。(A)0165(B) 0245(C) 0275(D)0315(E)03304 2014 年 1 月 某项活动中,将 3 男 3 女 6 名志愿者随机地分成甲、乙、丙三组,每组 2 人,则每组志愿者都是异性的概率为( )。5 2014 年 1 月 掷一枚均匀的硬币若干次,当正面向上次数大于反面向上次数时停止,则在 4 次之内停止的概率为( )。6 2013 年 1 月 已知 10 件产品中有 4 件一等品,从中任取 2 件,则至少有 1 件一等品的概率为( ) 。7 2012 年 1

3、 月 在一次商品促销活动中,主持人出示一个 9 位数,让顾客猜测商品的价格,商品的价格是该 9 位数中从左到右相邻的 3 个数字组成的 3 位数,若主持人出示的是 513 535 319,则顾客一次猜中价格的概率是( )。8 2012 年 1 月 经统计,某机场的一个安检口每天中午办理安检手续的乘客人数及相应的概率如下表:该安检口 2 天中至少有 1 天中午办理安检手续的乘客人数超过 15 的概率是( )。(A)02(B) 025(C) 04(D)05(E)0759 20 1210 月 下图是一个简单的电路图,S 1、S 2、S 3 表示开关,随机闭合S1、S 2、S 3,中的两个,灯泡发光的

4、概率是( )。10 2011 年 1 月 现从 5 名英语专业,4 名经济专业和 1 名财会专业的学生中随机派出一个 3 人小组,则该小组中 3 个专业各有 1 名学生的概率为( )。11 2011 年 1 月 将 2 个红球与 1 个白球随机地放人甲、乙、丙三个盒子中,则乙盒中至少有 1 个红球的概率为( )。12 2011 年 10 月10 名网球选手中有 2 名种子选手。现将他们分成两组,每组 5 人,则 2 名种子选手不在同一组的概率为( )。13 2010 年 1 月 某商店举行店庆活动,顾客消费达到一定数量后,可以在 4 种赠品中随机选取两件不同的赠品,任意两位顾客所选的赠品中,恰

5、有一件品种相同的概率是( ) 。14 2010 年 1 月 某装置的启动密码是由 0 到 9 中的 3 个不同数字组成的,连续 3次输入错误密码,就会导致该装置永久关闭,一个仅记得密码是由 3 个不同数字组成的人能够启动此装置的概率为( )。15 2010 年 10 月 某公司有 9 名工程师,张三是其中之一。从中任意抽调 4 人组成公关小组,包括张三的概率是( )。16 2010 年 10 月 在 10 道备选试题中,甲能答对 8 题,乙能答对 6 题。若某次考试从这 10 道备选题中随机抽出 3 道作为考题,至少答对 2 题才算合格,则甲、乙两人考试都合格的概率是( )。17 2009 年

6、 1 月 在 36 人中,血型情况如下:A 型 12 人,B 型 10 人,AB 型 8 人,O 型 6 人。若从中随机选出两人,则两人血型相同的概率是 ( )。18 2009 年 10 月 若以连续两次掷骰子得到的点数 a 和 b 作为点 P 的坐标,则点P(a,b)落在直线 x+y=6 和两坐标轴围成的三角形内的概率为( )。19 2008 年 1 月 若从原点出发的质点 M 向 x 轴的正向移动一个和两个坐标单位的概率分别是 ,则该质点移动 3 个坐标单位的概率是( )。20 2006 年 10 月 一批产品的合格率为 95,而合格率中一等品占 60,其余为二等品,现从中任取一件检验,这

7、件产品是二等品的概率为( )。(A)057(B) 038(C) 035(D)026(E)以上结论不正确21 2008 年 1 月 某乒乓球男子单打决赛在甲、乙两选手间进行比赛用 7 局 4 胜制。已知每局比赛甲选手战胜乙选手的概率为 07,则甲选手以 4:1 战胜乙的概率为( )。(A)08407 3(B) 00907 3(C) 03 407(D)03 307 2(E)以上都不对二、条件充分性判断本大题共 30 分。 本大题要求判断所给出的条件能否充分支持题干中陈述的结论。阅读条件(1)和(2)后选择。A. 条件(1)充分,但条件(2)不充分。B. 条件( 2)充分,但条件(1)不充分。C.

8、条件( 1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分。D. 条件(1)充分,条件(2)也充分。E. 条件(1)和(2)单独都不充分,条件(1)和条件( 2)联合起来也不充分。22 2014 年 12 月 信封中有 10 张奖券,只有一张有奖,从信封中同时抽取 2 张奖券,中奖的概率为 P,从信封中每次抽取一张后放回,如此重复抽取 n 次,中奖的概率为 Q,则 PQ。(1)n=2;(2)n=3。(A)条件(1)充分,但条件 (2)不充分。(B)条件 (2)充分,但条件(1)不充分。(C)条件 (1)和(2)单独都不充分,但条件(1) 和(2)联合起来充分。(D)条件(1)充分,

9、条件 (2)也充分。(E)条件(1)和(2) 单独都不充分,条件(1)和条件(2)联合起来也不充分。23 2012 年 10 月 在一个不透明的布袋中装有 2 个白球、m 个黄球和若干个黑球,它们只有颜色不同。则 m=3。(1)从布袋中随机摸出一个球,摸到白球的概率是 02;(2)从布袋中随机摸出一个球,摸到黄球的概率是 03。(A)条件(1)充分,但条件 (2)不充分。(B)条件 (2)充分,但条件(1)不充分。(C)条件 (1)和(2)单独都不充分,但条件(1) 和(2)联合起来充分。(D)条件(1)充分,条件 (2)也充分。(E)条件(1)和(2) 单独都不充分,条件(1)和条件(2)联

10、合起来也不充分。24 2009 年 1 月 点(s,t)落入圆(x 一 a)2+(y 一 a)2=a2 内的概率是 。 (1)s ,t 是连续掷一枚骰子两次所得到的点数,a=3; (2)s,t 是连续掷一枚骰子两次所得到的点数,a=2。(A)条件(1)充分,但条件 (2)不充分。(B)条件 (2)充分,但条件(1)不充分。(C)条件 (1)和(2)单独都不充分,但条件(1) 和(2)联合起来充分。(D)条件(1)充分,条件 (2)也充分。(E)条件(1)和(2) 单独都不充分,条件(1)和条件(2)联合起来也不充分。25 2007 年 10 月 从含有 2 件次品,n2(n20)件正品的 n

11、件产品中随机抽查2 件,其中有 1 件次品的概率为 06。(1)n=5;(2)n=6。(A)条件(1)充分,但条件 (2)不充分。(B)条件 (2)充分,但条件(1)不充分。(C)条件 (1)和(2)单独都不充分,但条件(1) 和(2)联合起来充分。(D)条件(1)充分,条件 (2)也充分。(E)条件(1)和(2) 单独都不充分,条件(1)和条件(2)联合起来也不充分。26 2014 年 1 月 已知袋中装有红、黑、白三种颜色的球若干个,则红球最多。(1)随机取出的一球是白球的概率为 ;(2)随机取出的两球中至少有一个黑球的概率小于 。(A)条件(1)充分,但条件 (2)不充分。(B)条件 (

12、2)充分,但条件(1)不充分。(C)条件 (1)和(2)单独都不充分,但条件(1) 和(2)联合起来充分。(D)条件(1)充分,条件 (2)也充分。(E)条件(1)和(2) 单独都不充分,条件(1)和条件(2)联合起来也不充分。27 2013 年 1 月 档案馆在一个库房中安装了 n 个烟火感应报警器,每个报警器遇到烟火成功报警的概率均为 P,该库房遇烟火发出警报的概率达到 0999。(1)n=3,P=09;(2)n=2,P=097。(A)条件(1)充分,但条件 (2)不充分。(B)条件 (2)充分,但条件(1)不充分。(C)条件 (1)和(2)单独都不充分,但条件(1) 和(2)联合起来充分

13、。(D)条件(1)充分,条件 (2)也充分。(E)条件(1)和(2) 单独都不充分,条件(1)和条件(2)联合起来也不充分。28 2012 年 1 月 某产品需经过两道工序才能加工完成,每道工序合格概率相等,则产品合格概率大于 08。(1)该产品每道工序合格概率均为 081;(2)该产品每道工序合格概率均为 09。(A)条件(1)充分,但条件 (2)不充分。(B)条件 (2)充分,但条件(1)不充分。(C)条件 (1)和(2)单独都不充分,但条件(1) 和(2)联合起来充分。(D)条件(1)充分,条件 (2)也充分。(E)条件(1)和(2) 单独都不充分,条件(1)和条件(2)联合起来也不充分

14、。29 2012 年 1 月 在某次考试中,3 道题中答对 2 道即为及格。假设某人答对各题的概率相同,则此人及格的概率是 。(1)答对各题的概率均为 ;(2)3 道题全部答错的概率为 。(A)条件(1)充分,但条件 (2)不充分。(B)条件 (2)充分,但条件(1)不充分。(C)条件 (1)和(2)单独都不充分,但条件(1) 和(2)联合起来充分。(D)条件(1)充分,条件 (2)也充分。(E)条件(1)和(2) 单独都不充分,条件(1)和条件(2)联合起来也不充分。30 2011 年 10 月 某种流感在流行。从人群中任意找出 3 人,其中至少有 1 人患该种流感的概率为 0271。(1)

15、该流感的发病率为 03;(2)该流感的发病率为 01。(A)条件(1)充分,但条件 (2)不充分。(B)条件 (2)充分,但条件(1)不充分。(C)条件 (1)和(2)单独都不充分,但条件(1) 和(2)联合起来充分。(D)条件(1)充分,条件 (2)也充分。(E)条件(1)和(2) 单独都不充分,条件(1)和条件(2)联合起来也不充分。31 2009 年 10 月 命中来犯敌机的概率是 99。(1)每枚导弹命中率为 06;(2)至多同时向来犯敌机发射 4 枚导弹。(A)条件(1)充分,但条件 (2)不充分。(B)条件 (2)充分,但条件(1)不充分。(C)条件 (1)和(2)单独都不充分,但

16、条件(1) 和(2)联合起来充分。(D)条件(1)充分,条件 (2)也充分。(E)条件(1)和(2) 单独都不充分,条件(1)和条件(2)联合起来也不充分。32 2008 年 10 月 张三以卧姿射击 10 次,命中靶子 7 次的概率是 。 (1)张三以卧姿打靶的命中率是 02; (2)张三以卧姿打靶的命中率是 05。(A)条件(1)充分,但条件 (2)不充分。(B)条件 (2)充分,但条件(1)不充分。(C)条件 (1)和(2)单独都不充分,但条件(1) 和(2)联合起来充分。(D)条件(1)充分,条件 (2)也充分。(E)条件(1)和(2) 单独都不充分,条件(1)和条件(2)联合起来也不

17、充分。33 2007 年 10 月 若王先生驾车从家到单位必须经过三个有红绿灯的十字路口,则他没有遇到红灯的概率为 0125。(1)他在每一个路口遇到红灯的概率都是 05:(2)他在每一个路口遇到红灯的时间相互独立。(A)条件(1)充分,但条件 (2)不充分。(B)条件 (2)充分,但条件(1)不充分。(C)条件 (1)和(2)单独都不充分,但条件(1) 和(2)联合起来充分。(D)条件(1)充分,条件 (2)也充分。(E)条件(1)和(2) 单独都不充分,条件(1)和条件(2)联合起来也不充分。MBA 联考综合能力数学(古典概率、随机事件的独立性)历年真题试卷汇编 1 答案与解析一、问题求解

18、本大题共 15 小题,每小题 3 分,共 45 分。下列每题给出的五个选项中,只有一项是符合试题要求的。1 【正确答案】 C【试题解析】 从 6 张卡片中随机取 3 张,共有 C63=20 种取法,10 可以分成1,3,6 或 1,4,5 或 2,3,5 的和,则数字之和等于 10 的概率为 =015。故选 C。【知识模块】 古典概率2 【正确答案】 D【试题解析】 1 到 100 的整数中能被 5 整除的有 20 个,能被 7 整除的有 14 个,能同时被 5 和 7 整除的有两个(即 35 和 70),则所求概率为 =032。故选D。【知识模块】 古典概率3 【正确答案】 A【试题解析】

19、甲获胜的情况可分为两类。第一类:甲胜乙,丙胜丁,甲胜丙,其概率为 03050 3=0045。第二类:甲胜乙,丁胜丙,甲胜丁,其概率为030 508=012,则甲获胜的概率为 0045+0 12=0165。 【知识模块】 古典概率4 【正确答案】 E【试题解析】 6 名志愿者随机分到甲、乙、丙三组,每组 2 人,则共有C62C42C22=90 种分法,每组志愿者都是异性的分法有 A33A33=36 种,所求的概率为。【知识模块】 古典概率5 【正确答案】 C【试题解析】 由于题干要求当正面向上次数大于反面向上次数时即停止,因此在四次内停止的情况包括两种:(1)第一次投掷正面向上;(2)第一次反面

20、向上,第二、三次正面向上。因此,四次内停止的概率为 ,故选 C。【知识模块】 古典概率6 【正确答案】 B【试题解析】 结合其对立事件概率可得 P=1 一 ,因此选 B。【知识模块】 古典概率7 【正确答案】 B【试题解析】 因为排除重复的组合 353 后一共有 513,135,353,535,531,319六种情况,所以顾客猜中的概率为 。【知识模块】 古典概率8 【正确答案】 E【试题解析】 因为根据表中可知一天中午办理安检不超过 15 人的概率为01+0 2+02=05,根据对立事件与原事件的概率和为 1可知 2 天中至少有1 天中午办理安检手续的乘客人数超过 15 的概率为 10505

21、=0 75。【知识模块】 古典概率9 【正确答案】 E【试题解析】 题干中提到随机闭合 S1、S 2、S 3 中的两个。若闭合 S1 和 S2,则灯泡不发光;若闭合 S1 和 S3,则灯泡发光;若闭合 S2 和 S3,则灯泡发光。所求的概率为 。【知识模块】 古典概率10 【正确答案】 E【试题解析】 P= 。【知识模块】 古典概率11 【正确答案】 D【试题解析】 采用对立事件来求。因为每个球的放法有 3 种,所以总放法数为33,乙盒中一个红球都没有的种数为 223=12 种,所以乙盒中至少有 1 个红球的概率为 P=1 一 。【知识模块】 古典概率12 【正确答案】 C【试题解析】 因为分

22、成两组的总可能数是A22,两人不在同一组的概率 P=。【知识模块】 古典概率13 【正确答案】 E【试题解析】 此题描述的概型为古典概率中的简单概型,由题意可知总体数量为C42C42,样本数量 C42C21C21,因此概率 。 【知识模块】 古典概率14 【正确答案】 C【试题解析】 此题为古典概率中的简单概型,由于只有三次机会打开此装置因此样本数量为 3,总体数量为从十个数字中选出 3 个进行全排,全排数就为 A103,因此能启动此装置的概率为 P= 。【知识模块】 古典概率15 【正确答案】 D【试题解析】 此题为古典概率中的简单概型,样本数为 C83,总体数为 C94,因此概率 P= 。

23、【知识模块】 古典概率16 【正确答案】 A【试题解析】 甲合格的概率为 P1=1 一。【知识模块】 古典概率17 【正确答案】 A【试题解析】 。【知识模块】 古典概率18 【正确答案】 E【试题解析】 点 P(a,b)的总情况有 66=36 种,点 P(a,b)落入三角形内的情况有:(1 ,1) , (1,2),(1, 3),(1,4),(4,1),共 10 种。 所以概率。【知识模块】 古典概率19 【正确答案】 B【试题解析】 P= 。【知识模块】 古典概率20 【正确答案】 B【试题解析】 P=095(106)=038,因此选 B。【知识模块】 古典概率21 【正确答案】 A【试题解

24、析】 比赛情况是:总共比赛 5 局,前 4 局甲胜 3 局,第 5 局甲胜,所以P=C4307 30307=08407 3。【知识模块】 随机事件的独立性二、条件充分性判断本大题共 30 分。 本大题要求判断所给出的条件能否充分支持题干中陈述的结论。阅读条件(1)和(2)后选择。A. 条件(1)充分,但条件(2)不充分。B. 条件( 2)充分,但条件(1)不充分。C. 条件( 1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分。D. 条件(1)充分,条件(2)也充分。E. 条件(1)和(2)单独都不充分,条件(1)和条件( 2)联合起来也不充分。22 【正确答案】 B【试题解析】

25、同时抽出 2 张时,中奖概率 P= =02,如果每次抽取一张后放回,则每次不中奖的概率均为 09。 条件(1),n=2 时,Q=1 一(09) 2=019,显然 PQ,条件(1)不充分; 条件(2) ,n=3 时,Q=1 一(09) 3=0271,P Q,条件(2)充分。故选 B。【知识模块】 古典概率23 【正确答案】 C【试题解析】 条件(1)和(2)单独均不充分,现考虑联合,设黑球有 x 个,对于条件(1),P= =03 , 知:m=3 ,因此选 C。【知识模块】 古典概率24 【正确答案】 B【试题解析】 条件(1):a=3,不满足条件则至少要有一枚骰子投出 6,故落入圆内概率为 1

26、一 ,故条件(1)不充分;条件(2) :a=2 ,满足条件则要两枚骰子均不大于 4,故落入圆内概率为 ,故条件(2)充分。【知识模块】 古典概率25 【正确答案】 A【试题解析】 条件(1):P= ,不充分。因此选A。【知识模块】 古典概率26 【正确答案】 C【试题解析】 本题考查概率。由条件(1)可知随机取出的一个球是白球的概率为 ,那么随机取出的一个球是红球或黑球的概率共 ,不能确定红球最多,所以条件(1)不充分;由条件(2) 可知随机取出的两个球一个黑球也没有的概率大于 ,不能确定红球最多,所以条件(2)不充分;如果条件(1) 和条件(2)联合,即随机取出一个球是白球的概率为 ,随机取

27、出的两个球一个黑球也没有的概率大于 。设随机取出的一个球是红球的概率为戈,那么取出的两个球一个黑球也没有的有三种情况: (1)两个球都是红球,概率为 x2。 。 则x2+ ,那么可以推出红球最多,所以条件(1)和条件(2)联合充分,故选 C。【知识模块】 随机事件的独立性27 【正确答案】 D【试题解析】 由条件(1),P=1 一(109) 3=0999,充分;由条件(2),P=1 一(10 97)2=0999 1,充分。因此选 D。【知识模块】 随机事件的独立性28 【正确答案】 B【试题解析】 由条件(1),P=081 2=0656 108,所以不充分;由条件(2),P=09 2=0810

28、8,所以充分。【知识模块】 随机事件的独立性29 【正确答案】 D【试题解析】 由条件(1),及格的概率 P=C32 ,所以充分;由条件(2),每道题答错的概率为 ,等价于(1),所以也充分。【知识模块】 随机事件的独立性30 【正确答案】 B【试题解析】 由条件(1),至少有 1 人患该种流感的概率为 P=1 一070 707=0657,所以不充分;由条件(2),至少有 1 人患该种流感的概率为 P=1 一 09090 9=0 271,所以充分。【知识模块】 随机事件的独立性31 【正确答案】 E【试题解析】 显然单独都不充分。考虑联合,命中概率 P=1 一全未命中的概率=1一 04 4097099,所以不充分。【知识模块】 随机事件的独立性32 【正确答案】 B【试题解析】 由条件(1)得 P=C10702 708 3 ,所以不充分;由条件(2)P=C10705 705 3= ,所以充分。【知识模块】 随机事件的独立性33 【正确答案】 C【试题解析】 显然条件(1)和条件(2) 单独都不充分,现考虑联合。王先生三个路口都没有遇到红灯的概率为 P=( )3=0125,所以联合充分。因此选 C。【知识模块】 随机事件的独立性

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 考试资料 > 大学考试

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1