[考研类试卷]考研数学二(行列式)模拟试卷3及答案与解析.doc

上传人:eventdump275 文档编号:843556 上传时间:2019-02-21 格式:DOC 页数:14 大小:549.50KB
下载 相关 举报
[考研类试卷]考研数学二(行列式)模拟试卷3及答案与解析.doc_第1页
第1页 / 共14页
[考研类试卷]考研数学二(行列式)模拟试卷3及答案与解析.doc_第2页
第2页 / 共14页
[考研类试卷]考研数学二(行列式)模拟试卷3及答案与解析.doc_第3页
第3页 / 共14页
[考研类试卷]考研数学二(行列式)模拟试卷3及答案与解析.doc_第4页
第4页 / 共14页
[考研类试卷]考研数学二(行列式)模拟试卷3及答案与解析.doc_第5页
第5页 / 共14页
点击查看更多>>
资源描述

1、考研数学二(行列式)模拟试卷 3 及答案与解析一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。1 设多项式 则 x4 的系数和常数项分别为( )(A)6,一 6(B)一 6,6(C) 6,6(D)一 6,一 62 设多项式 则方程 f(x)=0 的根的个数为( )(A)1(B) 2(C) 3(D)43 行列式 等于( )(A)(ad 一 6c)2(B)一 (ad 一 bc)2(C) a2d2-b2c2(D)b 2c2 一 a2d24 设 A 为 3 阶矩阵,E 为 3 阶单位矩阵, 是线性无关的 3 维列向量,且 A 的秩 r(A)=2,A=,A=,则A+3E 为( )(A)0(

2、B) 6(C) 18(D)24二、填空题5 行列式6 行列式7 设 则行列式第 1 列各元素的代数余子式之和A11+A21+A31+A41=_8 设 A,B 均为 n 阶方阵,且A=2,B=一 3则=_.9 设 1,2,3 是 3 维列向量,令 A=(1,2,3),B=( 3+31, 2,4 1),且A =一1,则B =_.10 设 A 为 3 阶方阵,A=2,A *为 A 的伴随矩阵若交换 A 的第 1 行和与第 2行得矩阵 B,则BA *=_11 设 A,B 为 3 阶方阵,且A=1,B=2,A -1+B=2,则A+B -1=_12 设矩阵 A=(aij)33,满足 A*=AT,其中 A*

3、是 A 的伴随矩阵,A T 是 A 的转置矩阵,若 a11,a12,a13 是 3 个相等的正数,则 a13=_.13 设 4 阶矩阵 A 与 B 相似,矩阵 A 的特征值为 ,E 为 3 阶单元矩阵,则行列式B 一 1 一 E=_ 14 设 A,B 为 3 阶方阵,A 可相似于对角矩阵,且 A2A=D ,B 2+B=E,r(AB)=1则 A+2E=_.15 设 n 阶实对称矩阵 A 满足 A2+2A=D,若 r(A)=k(0kn),求A+3E=_三、解答题解答应写出文字说明、证明过程或演算步骤。16 计算三对角行列式17 设 3 阶行列式 且 M11+M12+M13=11,其中 Mij 是行

4、列式 D 中元素aij 的余子式,求 a,b 的值18 求行列式 的全部代数余子式之和19 设 4 阶行列式的第 2 列元素依次为 2,m,k, 3,第 2 列元素的余子式依次为1,一 1,1,一 1,第 4 列元素的代数余子式依次为 3,1,4,2且行列式的值为1,求 m,k20 设 3 阶方阵 满足 A2BA 一 B=E,求B21 计算行列式22 设 ab c0,证明23 设 A 为 n 阶方阵,且 AAT=E,若A0,证明A+E=024 设 x 为 n 维列向量,且 xTx=1,若 A=E 一 xxT,则A=025 设齐次线性方程组 有非零解,则 a 满足的条件是什么?考研数学二(行列式

5、)模拟试卷 3 答案与解析一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。1 【正确答案】 D【试题解析】 本题考查行列式的概念,不需要计算行列式,由定义的一般项的构成可得到要求的结果由行列式的定义知,主对角线元素的乘积就是 x4 的项,即x.2x(一 x).3x=一 6x4当 x=0 时行列式的值就是常数项,经计算 f(0)=一 6,故选D【知识模块】 行列式2 【正确答案】 B【试题解析】 本题考查行列式的概念、性质、计算公式和代数基本定理,方程的根与次数的关系不需要计算行列式,根据定义的一般项的构成能看出多项式的次数即可由于显然 f(x)是二次多项式,所以 f(x)=0 的

6、根的个数为 2故选 B【知识模块】 行列式3 【正确答案】 B【试题解析】 用行列式的性质与公式计算行列式:【知识模块】 行列式4 【正确答案】 D【试题解析】 本题考查用特征值计算抽象矩阵的行列式先用特征值与特征向量的定义和 r(A)求出抽象矩阵的特征值,再根据特征值与该矩阵行列式的关系计算行列式由于 r(A)=2,所以 =0 是 A 的一个特征值,由 A=,A= ,可得 A(+)=+,A()=一(),而 , 线性无关,所以 +0,0,所以 1,一1 是 A 的另两个特征值,因此 A 的特征值为 0,1,一 1,于是 A+3E 的特征值是3,4,2,故A+3E =342=24【知识模块】 行

7、列式二、填空题5 【正确答案】 48【试题解析】 本题考查行列式的性质及计算方法该行列式的特点是主对角线上元素相同,主对角线两侧的元素也相同、所以它的每列或每行元素之和为同一数,因此可用行列式的性质将所有的列(或行)都加到第 1 列(或第 1 行),再化成上、下三角形行列式,最后计算出行列式的值这种计算行列式的方法形象地称为叠加法,再化成上、下三角形行列式,直接用公式计算其结果【知识模块】 行列式6 【正确答案】 x 2y2【试题解析】 本题考查行列式的性质和按 1 列(或 1 行)展开定理该行列式的特点是主对角线两侧的元素相同,但主对角线上的元素不同所以不能用叠加法,由行列式的展开定理将行列

8、式加上 1 行和 1 列使其将该行列式两侧相同的元素消成零,化成“个”字行列式,再用行列式的性质将个字行列式化成三角形行列式可求其值 注意到当 x=0 或 y=0 时,D=0,而当 xy0 时,有【知识模块】 行列式7 【正确答案】 0【试题解析】 本题主要考查行列式代数余子式的概念根据行列式代数余子式的定义知:D 的第 1 列元素的代数余子式与第 1 列元素无关,所以,所求A11+A21+A31+A41 的值相当于将行列式 D 的第 1 列用 1 代替而得的行列式的值根据行列式按 1 行(列) 展开定理得【知识模块】 行列式8 【正确答案】 【试题解析】 本题考查方阵行列式的有关性质和计算公

9、式熟练掌握方阵行列式的有关性质、公式和运算是解题的关键【知识模块】 行列式9 【正确答案】 4【试题解析】 本题考查行列式的性质、向量组与矩阵的关系和向量组线性组合的概念,灵活运用上述关系计算行列式用行列式的性质计算行列式B =4 3,31,2,3=4 3,2,1=一 4 1,2,3=-4(一 1)=4【知识模块】 行列式10 【正确答案】 一 8【试题解析】 本题考查方阵行列式的计算,涉及的知识点是矩阵初等变换与初等矩阵的关系要求考生熟练运用矩阵初等变换与初等方阵的关系计算行列式由于B=E(1,2)A ,所以 BA*=E(1,2)AA *=AE(1,2),故BA *= AE(1, 2)=A

10、3E(1,2) =一 23=一 8【知识模块】 行列式11 【正确答案】 1【试题解析】 本题考查方阵行列式的计算,涉及的知识点是逆矩阵的有关性质、要求考生运用应用矩阵与其逆矩阵的关系计算行列式A+B -1=A(A -1+B)B-1= AA -1+BB -1=12 =1【知识模块】 行列式12 【正确答案】 【试题解析】 本题考查行列式按行(列)展开定理、矩阵与其伴随矩阵的行列式的关系要求考生应用行列式的性质,展开定理、矩阵与其伴随矩阵的行列式的关系计算行列式由A T=A *和A *=A 31 =A 2,得A 2=A ,即A(A1)=0,从而A=0 或A=1将A按第一行展开,再由A*=AT 知

11、 aij=Aij,得A=a 11A11+a12A12+a13A13=a122+a122+a132=3a1120,于是得A=1,即 3a112=1,故 【知识模块】 行列式13 【正确答案】 24【试题解析】 本题考查用方阵的特征值与特征向量及相似矩阵的理论计算行列式由于 A 与 B 相似,所以 B 的特征值为 ,B 一 1 的特征值为2,3,4,5,从而 B 一 1 一 E 的特征值为 1,2,3,4故B 一 1 一E=1234=24【知识模块】 行列式14 【正确答案】 12【试题解析】 本题考查求抽象矩阵的特征值和由矩阵的秩确定特征值以及行列式与其特征值的关系由 A2A=D 知 A 的特征

12、值为 1,0,再由 B2+E=E 知 B 可逆,从而由 r(AB)=1 知 r(A)=1,又 A 可对角化,所以 A 的特征值为 1,0,0,因此A+2E 的特征值为 3,2,2,故A+2E =322=12【知识模块】 行列式15 【正确答案】 3 n-k(0kn)【试题解析】 本题考查用特征值计算抽象矩阵的行列式先用特征值与特征向量的定义求出抽象矩阵的特征值,再由 r(A)=k(0k n)确定 A 的特征值的重数,最后根据特征值与该矩阵行列式的关系计算行列式由 A2+2A=O 知,A 的特征值为一 2 或 0,又 r(A)=k(0kn),且 A 是 n 阶实对称矩阵,则故A+3E=3 n-k

13、【知识模块】 行列式三、解答题解答应写出文字说明、证明过程或演算步骤。16 【正确答案】 将 Dn 按第 1 行展开,得=(a+b)Dn-1-abDn-2,即得递推关系Dn=(a+b)Dn-1 一 abDn-2由以上关系式可得同理 Dn 一 bDn-1=a(Dn-1 一 bDn-2)=an于是有 当 a=b 时,由 Dn=an+aDn-1=an+a(an-1+aDn-2)=2an+a2Dn-2=(n 一 1)an+an-1D1=(n1)an+2an=(n+1)an【试题解析】 本题考查行列式的性质和展开定理此题为三对角行列式,通常用递推法 对于 n 阶行列式 Dn,若能找出 Dn 与 Dn-1

14、 或 Dn 与 Dn-1,D n-2 之间的一种关系称为递推关系(其中 Dn,D n-1,D n-2 结构相同),然后按此公式推出 Dn,这种计算行列式的方法称为递推法 一般地,当 n 阶行列式 Dn 中元素 a11 的余子式M11 与 Dn 结构相同,可考虑用递推法【知识模块】 行列式17 【正确答案】 由于 于是,得方程组解得 a=3,b=8【知识模块】 行列式18 【正确答案】 记故【试题解析】 本题主要考查行列式某元素余子式及其代数余子式的概念和 A 的伴随矩阵 A*的构成 由于要求全部元素的代数余子式之和,所以只需求出 A 的伴随矩阵 A*,其所有元素之和即为所求,注意到公式 A*=

15、AA -1,因此需求A 和A-1【知识模块】 行列式19 【正确答案】 由行列式按行(列)展开定理及其推论,得即 解得 m=一 4,k=一 2【试题解析】 本题考查行列式某元素余子式、代数余子式、行列式按行(列)展开定理及其推论【知识模块】 行列式20 【正确答案】 由 A2BAB=E,得(A 2 一 B)B=A+E,即(A+E)(A 一 E)B=A+E,显然,A+E 可逆,所以在上式的两端左乘 A+E 的逆得(A E)B=E两边取行列式 故B=1【试题解析】 本题考查解矩阵方程后,再求方阵的行列式要熟练掌握方阵行列式的计算公式和解题方法【知识模块】 行列式21 【正确答案】 【试题解析】 本

16、题主要考查行列式的性质和范德蒙德行列式要求考生熟记范德蒙德行列式的计算公式【知识模块】 行列式22 【正确答案】 将行列式 D 的第 1 列乘 a 加到第 3 列,再将第 1 列乘 b 加到第 3列,又将第 1 列乘 c 加到第 3 列得【试题解析】 本题主要考查行列式的性质和范德蒙德行列式将该行列式化成范德蒙德行列式是解题的关键【知识模块】 行列式23 【正确答案】 由于 AAT=E 得A=1,而A0,于是A=一1又A+E=A+AA T=AE+A T= A A T+ET=一 1A+E 即2A+E=0,故A+E =0【试题解析】 本题考查正交矩阵的性质,将 E 用 AAT 代入是证题的关键【知识模块】 行列式24 【正确答案】 由于 xTx=1,所以 x0,于是 Ax=(E 一 xxT)x=xxxTx=xx=0,故A=0【试题解析】 本题考查齐次线性方程组的克拉默法则要求考生掌握若齐次线性方程组有非零解,则其系数行列式为 0【知识模块】 行列式25 【正确答案】 由于齐次线性方程组有非零解,所以其系数行列式等于零即故 a=1 或 a=一 4【试题解析】 本题考查齐次线性方程组的克拉默法则要求考生掌握若齐次线性方程组有非零解,则其系数行列式为零由此确定参数 a【知识模块】 行列式

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 考试资料 > 大学考试

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1