2018年中考数学真题分类汇编第二期专题3整式与分解因式试题含解析201901253116.doc

上传人:bowdiet140 文档编号:954590 上传时间:2019-03-09 格式:DOC 页数:24 大小:405.50KB
下载 相关 举报
2018年中考数学真题分类汇编第二期专题3整式与分解因式试题含解析201901253116.doc_第1页
第1页 / 共24页
2018年中考数学真题分类汇编第二期专题3整式与分解因式试题含解析201901253116.doc_第2页
第2页 / 共24页
2018年中考数学真题分类汇编第二期专题3整式与分解因式试题含解析201901253116.doc_第3页
第3页 / 共24页
2018年中考数学真题分类汇编第二期专题3整式与分解因式试题含解析201901253116.doc_第4页
第4页 / 共24页
2018年中考数学真题分类汇编第二期专题3整式与分解因式试题含解析201901253116.doc_第5页
第5页 / 共24页
点击查看更多>>
资源描述

1、1整式与分解因式一.选择题 1. (2018湖北随州3 分)下列运算正确的是( )Aa 2a3=a6 Ba 3a3 =1C (ab) 2=a2ab+b 2 D (a 2) 3=a 6【分析】根据同底数幂的乘法、完全平方公式及同底数幂的除法、幂的乘方逐一计算可得【解答】解:A.a 2a3=a5,此选项错误;B.a3a3 =a6,此选项错误;C.(ab) 2=a22ab+b 2,此选项错误;D.(a 2) 3=a 6,此选项正确;故选:D【点评】本题主要考查幂的运算,解题的关键是掌握同底数幂的乘法、完全平方公式及同底数幂的除法、幂的乘方的运算法则2. (2018湖北襄阳3 分)下列运算正确的是(

2、)Aa 2+a2=2a4 Ba 6a2=a3 C (a 3) 2=a6 D (ab) 2=ab2【分析】根据合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂相除,底数不变指数相减;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解【解答】解:A.a 2+a2=2a2,故 A 错误;B.a6a2=a4,故 B 错误;C.(a 3) 2=a6,故 C 正确;D.(ab) 2=a2b2,故 D 错误故选:C【点评】本题考查合并同类项、同底数幂的除法、积的乘方,熟练掌握运算性质和法则是解题的关键3. (2018湖南郴州3 分)下列

3、运算正确的是( )Aa 3a2=a6 Ba 2 = C3 2 = D (a+2) (a2)=a 2+4【分析】直接利用同底数幂的乘除运算法则以及负指数幂的性质以及二次根式的加减运算法则、平方差公式分别计算得出答案【解答】解:A.a 3a2=a5,故此选项错误;2B.a2 = ,故此选项错误;C.3 2 = ,故此选项正确;D.(a+2) (a 2)=a 24,故此选项错误故选:C【点评】此题主要考查了同底数幂的乘除运算以及负指数幂的性质以及二次根式的加减运算、平方差公式,正确掌握相关运算法则是解题关键4.(2018江苏宿迁3 分)下列运算正确的是( )A. B. C. D. 【答案】C【分析】

4、根据同底数幂的乘法,幂的乘方,同底数幂的除法,合并同类项的法则逐项进行计算即可得.【详解】A. ,故 A 选项错误;B. a2与 a1不是同类项,不能合并,故 B 选项错误;C. ,故 C 选项正确;D. ,故 D 选项错误,故选 C.【点睛】本题考查了同底数幂的乘法,幂的乘方,同底数幂的除法,合并同类项等运算,熟练掌握有关的运算法则是解题的关键.5.(2018江苏徐州2 分)下列运算中,正确的是( )Ax 3+x3=x6 Bx 3x9=x27 C (x 2) 3=x5 Dxx 2=x1【分析】根据合并同类项的法则,同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数

5、不变指数相减,对各选项计算后利用排除法求解【解答】解:A.应为 x3+x3=2x3,故本选项错误;B.应为 x3x9=x12,故本选项错误;C.应为(x 2) 3=x6,故本选项错误;D.xx2=x12 =x1 ,正确故选:D【点评】本题主要考查了合并同类项的法则,同底数幂的乘法,同底数幂的除法,幂的乘方,熟练掌握运算性质和法则是解题的关键6.(2018江苏无锡3 分)下列运算正确的是( )Aa 2+a3=a5 B (a 2) 3=a5 Ca 4a 3=a Da 4a3=a【分析】根据合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;幂的乘方,底数不变指数相乘;同底数

6、幂相除,底数不变指数相减,对各选项3分析判断后利用排除法求解【解答】解:A.a 2.a3不是同类项不能合并,故 A 错误;B.(a 2) 3=a6)x 5x5=x10,故 B 错误;C.a4.a3不是同类项不能合并,故 C 错误;D.a4a3=a,故 D 正确故选:D【点评】本题考查合并同类项、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键7.(2018山东东营市3 分)下列运算正确的是( )A(xy) 2=x 22xyy 2 Ba 2+a2=a4Ca 2a3=a6 D (xy 2) 2=x2y4【分析】根据完全平方公式、合并同类项法则、同底数幂的乘法、积的乘方与幂的乘方逐一计算

7、可得【解答】解:A.(xy) 2=x 2+2xyy 2,此选项错误;B.a2+a2=2a2,此选项错误;C.a2a3=a5,此选项错误;D.(xy 2) 2=x2y4,此选项正确;故选:D【点评】本题主要考查整式的运算,解题的关键是掌握完全平方公式、合并同类项法则、同底数幂的乘法、积的乘方与幂的乘方8.(2018山东聊城市3 分)下列计算错误的是( )Aa 2a0a2=a4 Ba 2(a 0a2)=1C (1.5) 8(1.5) 7=1.5 D1.5 8(1.5) 7=1.5【分析】根据同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,逐项判定即可【解答】解:a 2a0a2

8、=a4,选项 A 不符合题意;a 2(a 0a2)=1,选项 B 不符合题意;(1.5) 8(1.5) 7=1.5,选项 C 不符合题意;1.5 8(1.5) 7=1.5,选项 D 符合题意故选:D49.(2018内蒙古包头市3 分)如果 2xa+1y 与 x2yb1 是同类项,那么 的值是( )A B C1 D3【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出 A.b 的值,然后代入求值【解答】解:2x a+1y 与 x2yb1 是同类项,a+1=2,b1=1,解得 a=1,b=2 = 故选:A【点评】此题考查了同类项的知识,属于基础题,掌握同类项所含字母相同,并且相同字母

9、的指数也相同,是解答本题的关键10.(2018山东济宁市3 分)下列运算 正确的是( )Aa 8a4=a2 B( a2) 2=a4 Ca 2a3=a6 Da 2+a2=2a4【解答】解:A.a 8a6=a4,故此选项错误;B.(a 2) 2=a4,故原题 计算正确; C.a2a3=a5,故此选项 错误; D.a2+a2=2a2,故此选 项错误; 故选:B 11.(2018山东济宁市3 分)多项式4 aa 3 分解因式的结果 是( )Aa(4 a 2) B a(2 a (2 +a) Ca(a2 (a+2 ) D a(2 a) 2【解答】解:4 aa 3=a(4 a 2)=a(2 a (2 +a故

10、选:B12 (2018临安3 分)下列各式计算正确的是( )A a12a6=a2B ( x+y) 2=x2+y25C D【分析】此类题目难度不大,可用验算法解答【解答】解: A.a12a6是同底数幂的除法,指数相减而不是相除,所以 a12a6=a6,错误;B.( x+y) 2为完全平方公式,应该等于 x2+y2+2xy,错误;C. = = = ,错误;D.正确故选:D【点评】正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键运算法则: aman=am n, = ( a0, b0) 13 (2018湖州3 分)计算3 a(2 b) ,正确的结果是( )A. 6 ab B. 6ab C.

11、ab D. ab【答案】 A【解析】分析:根据单项式的乘法解答即可详解:-3 a(2 b)=-6 ab,故选:A点睛:此题考查单项式的乘法,关键是根据法则计算14 (2018金华、丽水3 分)计算 结果正确的是( ) A. B. C. D. 【解析】 【解答】解: ,故答案为:B。【分析】考查同底数幂的除法法则; = ,则可用同底数幂的除法法则计算即可。15. (2018广西玉林3 分)下列计算结果为 a6的是( )Aa 7a Ba 2a3 C a8a2 D (a 4) 2【分析】根据同底数幂的乘除法法则、幂的乘方法则、合并同类项法则进行计算,判断即可【解答】解:A.a 7与 a 不能合并,A

12、 错误;B.a2a3=a5,B 错误;C.a8a2=a6,C 正确;6D.(a 4) 2=a8,D 错误;故选:C16 (2018广西桂林3 分)用代数式表示: a 的 2 倍与 3 的和.下列表示正确的是( )A. 2a-3 B. 2a+3 C. 2(a-3) D. 2(a+3)【答案】B【解析】分析:a 的 2 倍与 3 的和也就是用 a 乘 2 再加上 3,列出代数式即可详解:“ a 的 2 倍与 3 的和”是 2a+3故选:B点睛:此题考查列代数式,解决问题的关键是读懂题意,找到所求的量的数量关系,注意字母和数字相乘的简写方法17 (2018广西桂林3 分)下列计算正确的是( )A.

13、B. C. D. 【答案】C【解析】分析:根据合并同类项法则;单项式乘以单项式;幂的乘方等计算法则,对各选项分析判断后利用排除法求解详解:A.应为 2x-x=x,故本选项错误;B.应为 x(-x)=-x 2,故本选项错误;C. ,故本选项正确;D. 与 x 不是同类项,故该选项错误故选:C点睛:本题考查了合并同类项法则,单项式乘以单项式;幂的乘方等计算法则,熟练掌握运算性质和法则是解题的关键18 (2018广西南宁3 分)下列运算正确的是( )Aa(a+1)=a 2+1B (a 2) 3=a5 C3a 2+a=4a3 Da 5a2=a3【分析】根据单项式乘多项式、合并同类项、同底数幂的除法以及

14、幂的乘方的运算法则,分别对每一项进行分析即可得出答案【解答】解:A.a(a+1)=a 2+a,故本选项错误;B.(a 2) 3=a6,故本选项错误;C.不是同类项不能合并,故本选项错误;D.a5a2=a3,故本选项正确故选:D【点评】此题考查了单项式乘多项式、合并同类项、同底数幂的除法以及幂的乘方,熟练7掌握运算法则是解题的关键19. (2018黑龙江大庆3 分)某商品打七折后价格为 a 元,则原价为( )Aa 元 B a 元 C30%a 元 D a 元【分析】直接利用打折的意义表示出价格进而得出答案【解答】解:设该商品原价为:x 元,某商品打七折后价格为 a 元,原价为:0.7x=a,则 x

15、= a(元) 故选:B20. (2018黑龙江哈尔滨3 分)下列运算一定正确的是( )A (m+n) 2=m2+n2 B (mn) 3=m3n3 C (m 3) 2=m5 Dmm 2=m2【分析】直接利用完全平方公式以及积的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案【解答】解:A.(m+n) 2=m2+2mn+n2,故此选项错误;B.(mn) 3=m3n3,正确;C.(m 3) 2=m6,故此选项错误;D.mm2=m3,故此选项错误;故选:B【点评】此题主要考查了完全平方公式以及积的乘方运算、同底数幂的乘除运算,正确掌握运算法则是解题关键21. (2018黑龙江龙东地区3 分)下列各

16、运算中,计算正确的是( )Aa 12a3=a4B (3a 2) 3=9a6C (ab) 2=a2ab+b 2 D2a3a=6a 2【分析】各项计算得到结果,即可作出判断【解答】解:A.原式=a 9,不符合题意;B.原式=27a 6,不符合题意;C.原式=a 22ab+b 2,不符合题意;D.原式=6a 2,符合题意故选:D【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键22 (2018黑龙江齐齐哈尔3 分)下列计算正确的是( )Aa 2a3=a6 B (a 2) 2=a4 Ca 8a4=a2 D (ab) 3=ab38【分析】直接利用同底数幂的乘除运算法则以及积的乘方运算法则、

17、幂的乘方运算法则分别计算得出答案【解答】解:A.a 2a3=a5,故此选项错误;B.(a 2) 2=a4,正确;C.a8a4=a4,故此 选项错误;D.(ab) 3=a3b3,故此选项错误;故选:B【点评】此题主要考查了同底数幂的乘除运算以及积的乘方运算、幂的乘方运算,正确掌握运算法则是解题关键23 (2018黑龙江齐齐哈尔3 分)我们知道,用字母表示的代数式是具有一般意义的,请仔细分析下列赋予 3a 实际意义的例子中不正确的是( )A若葡萄的价格是 3 元/千克,则 3a 表示买 a 千克葡萄的金额B若 a 表示一个等边三角形的边长,则 3a 表示这个等边三角形的周长C将一个小木块放在水平桌

18、面上,若 3 表示小木块与桌面的接触面积,a 表示桌面受到的压强,则 3a 表示小木块对桌面的压力D若 3 和 a 分别表示一个两位数中的十位数字和个位数字,则 3a 表示这个两位数【分析】分别判断每个选项即可得【解答】解:A.若葡萄的价格是 3 元/千克,则 3a 表示买 a 千克葡萄的金额,正确;B.若 a 表示一个等边三角形的边长,则 3a 表示这个等边三角形的周长,正确;C.将一个小木块放在水平桌面上,若 3 表示小木块与桌面的接触面积,a 表示桌面受到的压强,则 3a 表示小木块对桌面的压力,正确;D.若 3 和 a 分别表示一个两位数中的十位数字和个位数字,则 30+a 表示这个两

19、位数,此选项错误;故选:D【点评】本题主要考查代数式,解题的关键是掌握代数式的书写规范和实际问题中数量间的关系24 (2018湖北省恩施3 分)下列计算正确的是( )Aa 4+a5=a9 B (2a 2b3) 2=4a4b6C2a(a+3)=2a 2+6a D (2ab) 2=4a2b 2【分析】根据合并同类项、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式进行计算【解答】解:A.a 4与 a5不是同类项,不能合并,故本选项错误;B.(2a 2b3) 2=4a4b6,故本选项正确;C.2a(a+3)=2a 26a,故本选项错误;9D.(2ab) 2=4a24ab+b 2,故本选项错误;

20、故选:B【点评】本题主要考查了合并同类项的法则、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式,熟练掌握运算法则是解题的关键25 ( 2018广 西 北 海 3 分 ) 下 列 运 算 正 确 的 是A. a(a1) a21 B. (a2)3 a5 C. 3a2 a4 a3 D. a5a2 a3【答案】D【考点】整式的乘法;幂的乘方;整式的加法;同底数幂的除法【 解 析 】 选 项 A 错 误 , 直 接 运 用 整 式 的 乘 法 法 则 , 用 单 项 式 去 乘 多 项 式 的 每一 项 , 再 把 结 果 相 加 , 可 得 a(a1) a2 a;选项 B 错误,直接运用幂的乘

21、方法则,底数不变,指数相乘,可得( a2)3 a6; 选项 C 错误,直接运用整式的加法法则,3a2 和 a 不是同类项,不可以合并;选项 D 正确,直接运用同底数幂的除法,底数不变,指数相减,可得 a5a2 a3【点评】本题考查整式的四则运算,需要记住运算法则及其公式,属于基础题。26.(2018广西贵港3 分)下列运算正确的是( )A2aa=1 B2a+b=2ab C (a 4) 3=a7 D (a) 2(a) 3=a 5【分析】根据合并同类项,幂的乘方与积的乘方,同底数幂的乘法的计算法则解答【解答】解:A.2aa=a,故本选项错误;B.2a 与 b 不是同类项,不能合并,故本选项错误;C

22、.(a 4) 3=a12,故本选项错误;D.(a) 2(a) 3=a 5,故本选项正确故选:D【点评】考查了合并同类项,幂的乘方与积的乘方,同底数幂的乘法,属于基础题,熟记计算法则即可解答27.(2018贵州遵义3 分)下列运算正确的是( )A (a 2) 3=a 5 Ba 3a5=a15 C (a 2b3) 2=a4b6 D3a 22a 2=1【分析】直接利用积的乘方运算法则以及同底数幂的乘除运算法则、合并同类项法则分别计算得出答案【解答】解:A.(a 2) 3=a 6,故此选项错误;10B.a3a5=a8,故此选项错误;C.(a 2b3) 2=a4b6,正确;D.3a22a 2=a2,故此

23、选项错误;故选:C28.(2018海南3 分)计算 a2a3,结果正确的是( )Aa 5 Ba 6 Ca 8 Da 9【分析】根据同底数幂的乘法法则解答即可【解答】解:a 2a3=a5,故选:A【点评】此题考查同底数幂的乘法,关键是根据同底数的幂的乘法解答29.(2018贵州贵阳3分)当 x 1 时,代数式 3x 1 的值是( B )( A) -1 ( B) -2 ( C) -4 ( D) -4【解 】 3 ( 1) 1 230.(2018贵州黔西南州4 分)下列运算正确的是( )A3a 22a 2=a2 B(2a) 2=2a 2 C (a+b) 2=a2+b2 D2(a1)=2a+1【分析】

24、利用合并同类项对 A 进行判断;利用积的乘方对 B 进行判断;利用完全平方公式对 C 进行判断;利用取括号法则对 D 进行判断【解答】解:A.原式=a 2,所以 A 选项正确;B.原式=4a 2,所以 B 选项错误;C.原式=a 2+2ab+b2,所以 C 选项错误;D.原式=2a+2,所以 D 选项错误故选:A【点评】本题考查了幂的乘方与积的乘方:幂的乘方法则:底数不变,指数相乘:(a m)n=amn(m,n 是正整数) ;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘:(ab) n=anbn(n 是正整数) 也考查了整式的加减31.(2018 年湖南省娄底市)下列运算正确的是( )A

25、a 2a5=a10 B(3a 3) 2=6a6C(a+b) 2=a2+b2 D(a+2)(a3)=a 2a6【分析】各式计算得到结果,即可作出判断【解答】解:A.原式=a 7,不符合题意;B.原式=9a 6,不符合题意;C.原式=a 2+2ab+b2,不符合题意;D.原式=a 2a6,符合题意,故选:D11【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键32 (3 分)(2018 湖南省邵阳市)将多项式 xx 3因式分解正确的是( )Ax(x 21) Bx(1x 2) Cx(x+1) (x1) Dx(1+x) (1x)【分析】直接提取公因式 x,再利用平方差公式分解因式得出答案

26、【解答】解:xx 3=x(1x 2)=x(1x) (1+x) 故选:D【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式法是解题关键33 (2018 湖南长沙 3.00 分)下列计算正确的是( )Aa 2+a3=a5 B3 C (x 2) 3=x5 Dm 5m3=m2【分析】直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案【解答】解:A.a 2+a3,无法计算,故此选项错误;B.3 2 = ,故此选项错误;C.(x 2) 3=x6,故此选项错误;D.m5m3=m2,正确故选:D【点评】此题主要考查了合并同类项以及幂的乘方运算、同底数幂的乘除运算

27、,正确掌握相关运算法则是解题关键34 (2018 湖南张家界 3.00 分)下列运算正确的是( )Aa 2+a=2a3 B =a C (a+1) 2=a2+1 D (a 3) 2=a6【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变; =a (a0) ;完全平方公式:(ab) 2=a22ab+b2;幂的乘方法则:底数不变,指数相乘进行计算即可【解答】解:A.a 2和 a 不是同类项,不能合并,故原题计算错误;B. =|a|,故原题计算错误;C.(a+1) 2=a2+2a+1,故原题计算错误;D.(a 3) 2=a6,故原题计算正确;故选:D【点评】此题主

28、要考查了二次根式的性质、合并同类项、完全平方公式、幂的乘方,关键是掌握各计算法则和计算公式35 (2018 湖南湘西州 4.00 分)下列运算中,正确的是( )12Aa 2a3=a5 B2aa=2 C (a+b) 2=a2+b2 D2a+3b=5ab【分析】根据合并同类项的法则,完全平方公式,同底数幂的乘法的性质,对各选项分析判断后利用排除法求解【解答】解:A.a 2a3=a5,正确;B.2aa=a,错误;C.(a+b) 2=a2+2ab+b2,错误;D.2a+3b=2a+3b,错误;故选:A【点评】此题主要考查了整式的运算能力,对于相关的整式运算 法则要求学生很熟练,才能正确求出结果36.

29、(2018遂宁4 分)下列等式成立的是( )Ax 2+3x2=3x4 B0.00028=2.810 3C (a 3b2) 3=a9b6 D (a+b) (ab)=b 2a 2【分析】直接利用平方差公式以及科学记数法、积的乘方运算法则分别计算得出答案【解答】解:A.x 2+3x2=3x2,故此选项错误;B.0.00028=2.8104 ,故此选项错误;C.(a 3b2) 3=a9b6,正确;D.(a+b) (ab)=a 2b 2,故此选项错误;故选:C【点评】此题主要考查了平方差公式以及科学记数法、积的乘方运算,正确掌握运算法则是解题关键37. (2018资阳3 分)下列运算正确的是( )Aa

30、2+a3=a5 Ba 2a3=a6 C (a+b) 2=a2+b2 D (a 2) 3=a6【分析】根据合并同类项的法则,幂的乘方,完全平方公式,同底数幂的乘法的性质,对各选项分析判断后利用排除法求解【解答】解:A.a 2+a3=a2+a3,错误;B.a2a3=a5,错误;C.(a+b) 2=a2+2ab+b2,错误;D.(a 2) 3=a6,正确;故选:D【点评】此题主要考查了整式的运算能力,对于相关的整式运算法则要求学生很熟练,才能正确求出结果38.(2018乌鲁木齐4 分)下列运算正确的是( )Ax 3+x3=2x6 Bx 2x3=x6 Cx 3x=x3 D (2x 2) 3=8x 61

31、3【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解【解答】解:A.x 3+x3=2x3,故 A 错误;B.x2x3=x5,故 B 错误;C.x3x=x2,故 C 错误;D.(2x 2) 3=8x 6,故 D 正确故选:D【点评】本题考查合并同类项、同底数幂的乘法、同底数幂的除法、积的乘方,熟练掌握运算性质和法则是解题的关键二.填空题1. (2018湖南郴州3 分)因式分解:a 32a 2b+ab2= a(ab) 2 【分析】原式提取 a,再利用完全平方公式分解即可【

32、解答】解:原式=a(a 22ab+b 2)=a(ab) 2故答案为:a(ab) 2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键2. (2018湖南怀化4 分)因式分解:ab+ac= a(b+c) 【分析】直接找出公因式进而提取得出答案【解答】解:ab+ac=a(b+c) 故答案为:a(b+c) 【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键3. (2018湖南怀化4 分)计算:a 2a3= a 5 【分析】根据同底数的幂的乘法,底数不变,指数相加,计算即可【解答】解:a 2a3=a2+3=a5故答案为:a 5【点评】熟练掌握同底数的

33、幂的乘法的运算法则是解题的关键4.(2018江苏宿迁3 分)分解因式:x 2y-y=_【答案】y(x+1) (x-1)【分析】提公因式法与公式法的综合运用 14故答案为:y(x+1) (x1)5.(2018江苏徐州3 分)因式分解:2x 28= 2(x+2) (x2) 【分析】观察原式,找到公因式 2,提出即可得出答案【解答】解:2x 28=2(x+2) (x2) 【点评】本题考查提公因式法和公式法分解因式,是基础题6.(2018江苏淮安3 分) (a 2) 3= a 6 【分析】直接根据幂的乘方法则运算即可【解答】解:原式=a 6故答案为 a6【点评】本题考查了幂的乘方与积的乘法:(a m)

34、 n=amn(m,n 是正整数) ;(ab)n=anbn(n 是正整数) 7.(2018江苏苏州3 分)计算:a 4a= a 3 【分析】根据同底数幂的除法解答即可【解答】解:a 4a=a3,故答案为:a 3【点评】此题主要考查了同底数幂的除法,对于相关的同底数幂的除法的法则要求学生很熟练,才能正确求出结果8.(2018江苏苏州3 分)若 a+b=4,ab=1,则(a+1) 2(b1) 2的值为 12 【分析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值【解答】解:a+b=4,ab=1,(a+1) 2(b1) 2=(a+1+b1) (a+1b+1)=(a+b) (ab+2)=4(1

35、+2)=12故答案是:12【点评】本题考查了公式法分解因式,属于基础题,熟练掌握平方差公式的结构即可解答9.(2018山东东营市3 分)分解因式:x 34xy 2= x(x+2y) (x2y) 【分析】原式提取 x,再利用平方差公式分解即可【解答】解:原式=x(x 24y 2)=x(x+2y) (x2y) ,故答案为:x(x+2y) (x2y)15【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键10. (2018杭州4 分)计算:a-3a=_。 【答案】-2a 【考点】合并同类项法则及应用 【解析】 【解答】解:a-3a=-2a 故答案为:-2a【分析】利用

36、合并同类项的法则计算即可。11 (2018杭州4 分)因式分解: _ 【答案】【考点】提公因式法因式分解 【解析】 【解答】解:原式=(b-a) (b-a)-(b-a)=(b-a) (b-a-1) 【分析】观察此多项式的特点,有公因式(b-a),因此提取公因式,即可求解。12 (2018嘉兴4 分)分解因式 m2-3m=_。【答案】【解析】 【分析】用提取公因式法即可得到结果.【解答】原式= .故答案为:【点评】考查提取公因式法因式分解,解题的关键是找到公因式.13 (2018金华、丽水4 分)化简 的结果是_ 【解析】 【解答】解: 故答案为: 【分析】运用平方差分式 计算。14. (201

37、8贵州安顺4 分)若 是关于的完全平方式,则_【答案】7 或-1【解析】分析】直接利用完全平方公式的定义得出 2(m-3)=8,进而求出答案详解:x 2+2(m-3)x+16 是关于 x 的完全平方式,2(m-3)=8,解得:m=-1 或 7,故答案为:-1 或 7点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键15 (2018广西玉林3 分)已知 ab=a+b+1,则(a1) (b1)= 2 16【分析】将 ab=a+b+1 代入原式=abab+1 合并即可得【解答】解:当 ab=a+b+1 时,原式=abab+1=a+b+1ab+1=2,故答案为:216 (201

38、8广西桂林3 分)因式分解:x 2-4=_【答案】(x+2)(x-2)【解析】分析:运用平方差公式进行因式分解即可.!详解:x 2-4=(x+2) (x-2).故答案为:(x+2) (x-2).点睛:本题考查用公式法分解因式,掌握平方差公式的结构特征是解决本题的关键17 (2018广西南宁3 分)因式分解:2a 22= 2(a+1) (a1) 【分析】原式提取 2,再利用平方差公式分解即可【解答】解:原式=2(a 21)=2(a+1) (a1) 故答案为:2(a+1) (a1) 【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握运算法则是解本题的关键18. (2018黑龙江大庆3 分)已

39、知 = + ,则实数 A= 1 【分析】先计算出 + = ,再根据已知等式得出 A.B 的方程组,解之可得 【解答】解: += += , = + , ,解得: ,17故答案为:119 (2018黑龙江哈尔滨3 分)把多项式 x325x 分解因式的结果是 x(x+5)(x5) 【分析】首先提取公因式 x,再利用平方差公式分解因式即可【解答】解:x 325x=x(x 225)=x(x+5) (x5) 故答案为:x(x+5) (x5) 【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键20 (2018湖北省恩施3 分)因式分解:8a 32ab 2= 2a(2a+b) (2a

40、b) 【分析】首先提取公因式 2a,再利用平方差公式分解因式得出答案【解答】解:8a 32ab 2=2a(4a 2b 2)=2a(2a+b) (2ab) 故答案为:2a(2a+b) (2ab) 【点评】此题主要考查了提取公因式法分解因式以及公式法分解因式,正确应用公式是解题关键21. (2018福建 A 卷4 分)计算:( ) 01= 0 【分析】根据零指数幂:a 0=1(a0)进行计算即可【解答】解:原式=11=0,故答案为:0【点评】此题主要考查了零指数幂,关键是掌握 a0=1(a0) 22.(2018福建 B 卷4 分)计算:( ) 01= 0 【分析】根据零指数幂:a 0=1(a0)进

41、行计算即可【解答】解:原式=11=0,故答案为:0【点评】此题主要考查了零指数幂,关键是掌握 a0=1(a0) 23. (2018广东3 分)分解因式:x 22x+1= (x1) 2 【分析】直接利用完全平方公式分解因式即可【解答】解:x 22x+1=(x1) 2【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键24. ( 2018广 西 北 海 3 分 ) 因式分解 : 2a2 2= .18【答案】 2a 1a 1【考点】因式分解【解析】2 a2 2 2a2 1 2a 1a 1步 骤 一 : 先 提 公 因 式 2 得到: 2a2 1,步骤二:再利用平方差公

42、式因式分解得到结果: 2a 1a 1【点评】此题目考察了对于因式分解的基本判断与认识,属于基础题目25.(2018广西贵港3 分)因式分解:ax 2a= a(x+1) (x1) 【分析】首先提公因式 a,再利用平方差进行二次分解即可【解答】解:原式=a(x 21)=a(x+1) (x1) 故答案为:a(x+1) (x1) 【点评】此题主要考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解26.(2018贵州铜仁4 分)因式分解:a 3ab 2= a(a+b) (ab) 【分析】观察原式 a3ab 2,

43、找到公因式 a,提出公因式后发现 a2b 2是平方差公式,利用平方差公式继续分解可得【解答】解:a 3ab 2=a(a 2b 2)=a(a+b) (ab) 27 (2018 湖南张家界 3.00 分)因式分解:a 2+2a+1= (a+1) 2 【分析】直接利用完全平方公式分解因式得出答案【解答】解:a 2+2a+1=(a+1) 2故答案为:(a+1) 2【点评】此题主要考查了运用公式分解因式,正确掌握完全平方公式是解题关键28 (2018 湖南湘西州 4.00 分)按照如图的操作步骤,若输入 x 的值为 2,则输出的值是 2 (用科学计算器计算或笔算)【分析】将 x=2 代入程序框图中计算即

44、可得到结果【解答】解:将 x=2 代入得:3(2) 210=1210=2故答案为:2【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键29 (2018 湖南湘西州 4.00 分)分解因式:a 29= (a+3) (a3) 【分析】直接利用平方差公式分解因式进而得出答案【解答】解:a 29=(a+3) (a3) 19故答案为:(a+3) (a3) 【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键30.(2018上海4 分)计算:(a+1) 2a 2= 2a+1 【分析】原式利用完全平方公式化简,合并即可得到结果【解答】解:原式=a 2+2a+1a 2=2a+1,故答案

45、为:2a+1【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键31.(2018上海4 分)某商品原价为 a 元,如果按原价的八折销售,那么售价是 元 (用含字母 a 的代数式表示) 【分析】根据实际售价=原价 即可得【解答】解:根据题意知售价为 0.8a 元,故答案为:0.8a【点评】本题主要考查列代数式,解题的关键是掌握代数式书写规范与数量间的关系32. (2018达州3 分)已知 am=3,a n=2,则 a2mn 的值为 【分析】首先根据幂的乘方的运算方法,求出 a2m的值;然后根据同底数幂的除法的运算方法,求出 a2mn 的值为多少即可【解答】解:a m=3,a 2m=

46、32=9,a 2mn = = =4.5故答案为:4.5【点评】此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:底数 a0,因为 0 不能做除数;单独的一个字母,其指数是 1,而不是 0;应用同底数幂除法的法则时,底数a 可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么33. (2018遂宁4 分)分解因式 3a23b 2= 【分析】提公因式 3,再运用平方差公式对括号里的因式分解【解答】解:3a 23b 2=3(a 2b 2)=3(a+b) (ab) 故答案是:3(a+b) (ab) 【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止2034. (2018乌鲁木齐8 分)先化简,再求值:(x+1) (x1)+(2x1) 22x(2x1) ,其中 x= +1【分析】先去括号,再合并同类项;

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 考试资料 > 中学考试

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1