1、5.5 函数yAsin(x)的图象及应用,第五章 三角函数、解三角形,NEIRONGSUOYIN,内容索引,基础知识 自主学习,题型分类 深度剖析,课时作业,1,基础知识 自主学习,PART ONE,知识梳理,1.yAsin(x)的有关概念,ZHISHISHULI,x,2.用五点法画yAsin(x)(A0,0,xR)一个周期内的简图时,要找五个特征点 如下表所示:,2,0,3.函数ysin x的图象经变换得到yAsin(x)(A0,0)的图象的两种途径,|,1.怎样从ysin x的图象变换得到ysin(x)(0,0)的图象?,【概念方法微思考】,2.函数ysin(x)图象的对称轴是什么?,基础
2、自测,JICHUZICE,题组一 思考辨析 1.判断下列结论是否正确(请在括号中打“”或“”),1,2,3,4,5,6,7,1,2,3,4,5,6,7,题组二 教材改编,右,1,2,3,4,5,6,7,1,2,3,4,5,6,7,1,2,3,4,5,6,7,1,2,3,4,5,6,7,1,2,3,4,5,6,7,1,2,3,4,5,6,7,6.ycos(x1)图象上相邻的最高点和最低点之间的距离是_.,1,2,3,4,5,6,7,2,题型分类 深度剖析,PART TWO,题型一 函数yAsin(x)的图象及变换,师生共研,解 因为函数f(x)的最小正周期是,所以2.,列表如下:,描点、连线得图
3、象:,(2)作出f(x)在0,上的图象(要列表).,在本例条件下,若将函数f(x)的图象向右平移m(m0)个单位长度后得到函数yg(x)的图象,且yg(x)是偶函数,求m的最小值.,(1)yAsin(x)的图象可用“五点法”作简图得到,可通过变量代换zx计算五点坐标. (2)由函数ysin x的图象通过变换得到yAsin(x)的图象有两条途径:“先平移后伸缩”与“先伸缩后平移”.,跟踪训练1 (1)把函数ysin x的图象上所有点的横坐标都缩小到原来的一半,纵坐标保持不变,再把图象向右平移 个单位长度,所得图象的函数解析式为_.,题型二 由图象确定yAsin(x)的解析式,师生共研,yAsin
4、(x)中的确定方法 (1)代入法:把图象上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)或把图象的最高点或最低点代入. (2)五点法:确定值时,往往以寻找“五点法”中的特殊点作为突破口.,题型三 三角函数图象、性质的综合应用,(1)求函数f(x)的解析式;,多维探究,命题点1 图象与性质的综合问题,解 由三角函数的图象可知,,命题点2 函数零点(方程根)问题,(2,1),故m的取值范围是(2,1).,本例中,若将“有两个不同的实数根”改成“有实根”,则m的取值范围是_.,2,1),2m1,m的取值范围是2,1).,(1)研究yAsin(x)的性质时可将x视为一个整体,利用换元法
5、和数形结合思想进行解题. (2)方程根的个数可转化为两个函数图象的交点个数.,又kZ,k0,T.,答题模板,DATIMOBAN,三角函数图象与性质的综合问题,故函数g(x)在区间0,上的最大值为2,最小值为1. 14分,解决三角函数图象与性质的综合问题的一般步骤 第一步:(化简)将f(x)化为asin xbcos x的形式;,答题模板,3,课时作业,PART THREE,基础保分练,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13
6、,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,A.14k,14k(kZ) B.38k,18k(kZ) C.14k,14k(kZ) D.38k,18k(kZ),1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,得8k3x8k1(kZ), 所以函数f(x)的单调递增区间为8k3,8k1(kZ).,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
7、,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11
8、,12,13,14,15,16,112k(kN),8,又7228,所以函数g(x)在区间0,22上的零点个数是8.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,10.已知函数f(x)sin xcos x(0),xR.若函数f(x)在区间(,)内单调递增,且函数yf(x)的图象关于直线x对称,则的值为_.,因为f(x)在区间(,)内单调递增,且函数图象关于直线x对称, 所以f()必为一个周期上的最大值,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,
9、2,3,4,5,7,8,9,10,11,12,13,14,15,16,6,1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,6,(2)先列表,再作出函数f(x)在区间,上的图象.,列表如下:,作出函数部分图象如图所示:,1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,6,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,技能提升练,1,2,3,4,5,6,7,8,
10、9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,拓展冲刺练,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,(,12,),1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,令m23m2,解得m2或m1.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,