1、17.4 一元一次方程的应用市场经济、打折销售问题知识梳理:(1)商品利润商品售价商品成本价 (2)商品利润率价100%(3)商品销售额商品销售价商品销售量(4)商品的销售利润(销售价成本价)销售量(5)商品打几折出售 ,就是按原价的 百分之几十 出售,如商品打 8 折出售,即按原价的 80%出售1. 某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋 进价 60 元一双,八折出售后商家获利润率为 40%,问这种皮鞋标价是多少元?优惠价是多少元?2. 一家商店将某种服装按进价提高 40%后标价,又以 8 折优惠卖出,结果每件仍获利 12 元,这种服装每件的进价是多少?23.一家
2、商店将一种自行车按进价提高 45%后标价,又以八折优惠卖出,结果每辆仍获利 50 元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是 x 元,那么所列方程为( )A.45%(1+80%)x-x=50 B. 80%(1+45%)x - x = 50C. x-80%(1+45%)x = 50 D.80%(1-45%)x - x = 504某商品的进价为 800 元,出售时标价为 2100 元,后来由于该商品积压,商店准备打折出售,但要保持利润率为 5%,则应该打几折5一家商店将某种型号的彩电先按原售价提高 40%,然后在广告中写上“大酬宾,八折优惠”经顾客投拆后,拆法部门按已得非法收入的
3、 10 倍处以每台 2700 元的罚款,求每台彩电的原售价7.4 一元一次方程的应用3储蓄、储蓄利息问题知识梳理(1)顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。利息的 20%付利息税(2)利息=本金利率期数 本息和=本金+利息 利息税=利息税率(20%)(3) %,10本 金每 个 期 数 内 的 利 息利 润1. 某同学把 250 元钱存入银行,整存整取,存期为半年。半年后共得本息和 253.75 元,求银行半年期的年利率是多少?(不计利息税)3小刚的爸爸前年买了某公司的二年期债券 4500 元,今年到期,扣除利
4、息税后,共得本利和约 4700 元,问这种债券的年利率是多少(精确到 0.01%) 4 (北京海淀区)白云商场购进某种商品的进价是每件 8 元,销售价是每件 10 元(销售价与进价的差价 2 元就是卖出一件商品所获得的利润) 现为了扩大销售量,把每件的销售价降低 x%出售,但要求卖出一件商品所获得的利润是降价前所获得的利润的 90%,则 x 应等于( ) A1 B1.8 C2 D1045.用若干元人民币购买了一种年利率为 10% 的一年期债券,到期后他取出本金的一半用作购物,剩下的一半和所得的利息又全部买了这种一年期债券(利率不变) ,到期后得本息和 1320 元。问张叔叔当初购买这咱债券花了
5、多少元?57.4 一元一次方程的应用行 程 问 题知识梳理: 路程速度时间 时间路程速度 速度路程时间(1)相遇问题: 路程之和=总路程 (2)追及问题: 快行距慢行距原距 快行距慢行距原距(3)航行问题:顺 水 ( 风 ) 速 度 静 水 ( 风 ) 速 度 水 流 ( 风 ) 速 度逆 水 ( 风 ) 速 度 静 水 ( 风 ) 速 度 水 流 ( 风 ) 速 度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系1. 甲、乙两站相距 480 公里,一列慢车从甲站开出,每小时行 90 公里,一列快车从乙站开出,每小时行 140 公里。 (1)慢车先开出 1 小时,快车再开。两
6、车相向而行。问快车开出多少小时后两车相遇? (2)两车同时开出,相背而行多少小时后两车相距 600 公里? (3)两车同时开出,慢车在快 车后面同向而行,多少小时后快车与慢车相距 600 公里? (4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车? (5)慢车开出 1 小时后两车同向而行,快车在慢车后面,快车开出后多少 小时追上慢车?此题关键是要理解清楚相向、 相背、同向等的含义,弄清行驶过程。故可结合图形分析。 2. 甲乙两人在同一道路上从相距 5 千米的 A、B 两地同向而行,甲的速度为 5 千米/小时,乙的速度为 3 千米/小时,甲带着一只狗,当甲追乙时,狗先追上乙,再
7、返回遇上甲,再返回追上乙,依次反复,直至甲追上乙为止,已知狗的速度为 15 千米/小时,求此过程中,狗跑的总路程是多少?63 某船从 A 地顺流而下到达 B 地,然后逆流返回,到达 A、B 两地之间的 C 地,一共航行了 7小时,已知此船在静水中的速度为 8 千米/时,水流速度为 2 千米/时。A、C 两地之间的路程为 10千米,求 A、B 两地之间的路程。 4有一火车以每分钟 600 米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多 5 秒,又知第二铁桥的长度比第一铁桥长度的 2 倍短 50 米,试求各铁桥的长5已知甲、乙两地相距 120 千米,乙的速度比甲每小时快 1 千米,甲
8、先从 A 地出发 2 小时后,乙从 B 地出发,与甲相向而行经过 10 小时后相遇,求甲乙的速度?76一队学生去军事训练,走到半路,队长有事要从队头通知到队尾,通讯员以 18 米/分的速度从队头至队尾又返回,已知队伍的行进速度为 14 米/分。问:若已知队长 320 米,则通讯员几分钟返回?若已知通讯员用了 25 分钟,则队长为多少米?7一架飞机在两个城市之间飞行,风速为 24 千米/小时,顺风飞行需要 2 小时 50 分,逆风飞行需要 3 小时,求两个城市之间的飞行路程?8一轮船在甲、乙两码头之间航行,顺水航行需要 4 小时,逆水航行需要 5 小时, 水流的速度为 2 千米/时,求 甲、乙两
9、码头之间的距离。87.4 一元一次方程的应用工 程 问 题知识梳理:工作量工作效率工作时间 工作效率工作量工作时间工作时间工作量工作效率 完成某项任务的各工作量的和总工作量11. 一件工作,甲独作 10 天完成,乙独作 8 天完成,两人合作几天完成?2. 一件工程,甲独做需 15 天完成,乙独做需 12 天完成,现先由甲、乙合作 3 天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程? 3. 一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管 6 小时可注满水池;单独开乙管 8 小时可注满水池,单独开丙管 9 小 时可将满池水排空,若先将甲、乙管同时开放 2 小时,然后
10、打开丙管,问打开丙管后几小时可注满水池? 94.一批工业最新动态信息输入管理储存网络,甲独做需 6 小时,乙独做需 4 小时,甲先做 30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?4.某车间有 16 名工人,每人每天可加工甲种零件 5 个或乙种零件 4 个在这 16 名工人中,一部分人加工甲种零 件,其余的加工乙种零件 已知每加工一个甲种零件可获利 16 元,每加工一个乙种零件可获利 24 元若此车间一共获利 1440 元,求这一天有几个工人加工甲种零件5.一项工程甲单独做需要 10 天,乙需要 12 天,丙单独做需要 15 天,甲、丙先做 3 天后,甲因事离去,乙参与工
11、作,问还需几天完成?107.4 一元一次方程的应用:数字问题、等积问题数字问题知识梳理:(1)要搞清楚数的表示方法:一个三位数的百位数字为 a,十位数字是 b,个位数字为 c(其中 a、b、c 均为整数,且 1a9, 0b9, 0c9)则这个三位数表示为:100a+10b+c。然后抓住数字间或新数、原数之间的关系找等量关系列方程(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大 1;偶数用 2n 表示,连续的偶数用 2n+2 或 2n2 表示;奇数用 2n+1 或 2n1 表示。1. 一个三位数,三个数位上的数字之和是 17,百位上的数比十位上的数大 7,个位上的数是十位上的数
12、的 3 倍,求这个三位数.2. 一个两位数,个位上的数是十位上的数的 2 倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大 36,求原来的两位数等积变形问题: 常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变11圆柱体的体积公式 V=底面积高Sh r2h长方体的体积 V长宽高abc1.某粮库装粮食,第一个仓库 是第二个仓库存粮的 3 倍,如果从第一个仓库中取出 20 吨放入第二个仓库中,第二个仓库中的粮食是第一个中的 75。问每个仓库各有多少粮食?2.一个装满水的内部长、宽、高分别为 300 毫米,300 毫米和 80毫米的长方体铁盒中的水,倒入一个内径为 200 毫
13、米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到 0.1 毫米,3.14) 3.长方体甲的长、宽、高分别为 260mm,150mm,325mm,长方体乙的底面积为 130130mm2,又知甲的体积是乙的体积的 2.5 倍,求乙的高?127.4 一元一次方程的应用:方案选择问题1某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为 1000 元,经粗加工后销售,每吨利润可达 4500 元,经精加工后销售,每吨利 润涨至 7500 元,当地一家公司收购这种蔬菜 140 吨,该公司的加工生产能力是: 如果对蔬菜进行粗加工,每天可加工 16 吨,如果进行精加工,每天可加工 6 吨,但两种加工方
14、式不能同时进行,受季度等条件限制,公司必须在15 天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部 进行粗加工方案二:尽可能多地对蔬菜进行精加工,没来得及进行加工的蔬菜,在市场上直接销售方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好 15 天完成你认为哪种方案获利最多?为什么?2某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴 50元月基础费,然后每通话 1 分钟,再付电话费 0.2 元;“神州行”不缴月基础费,每通话 1分钟需付话费 0.4 元(这里均指市内电话) 若一个月内通话 x 分钟,两种通话方式的费用分别为 y1元和 y2元(1)写出
15、y1,y 2与 x 之间的函数关系式(即等式) (2)一个月内通话多少分钟,两种通话方式的费用相同?(3)若某人预计一个月内使用话费 120 元,则应选择哪 一种通话方式较合算?133某地区居民生活用电基本价格为每千瓦时 0.40 元,若每月用电量超过 a 千瓦时,则超过部分按基本电价的 70%收费。 (1)某户八月份用电 84 千瓦时,共交电费 30.72 元,求 a(2)若该用户九月份的平均电 费为 0.36 元,则九月份共用电多少千瓦时?应交电费是多少元?4某家电商场计划用 9 万元从生产厂家购进 50 台电视机已知该厂家生产 3种不同型号的电视机,出厂价分别为 A 种每台 1500 元
16、,B 种每台 2100 元,C 种每台 2500 元(1)若家电商场同时购进两种不同型号的电视机共 50 台,用去 9 万元,请你研究一下商场的进货方案(2)若商 场销售一台 A 种电视机可获利 150 元,销售一台 B 种电视机可获利 200 元,销售一台 C 种电视机可获利 250 元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?145.小刚为书房买灯。现有两种灯可供选购,其中一种是 9 瓦的节能灯,售价为 49 元/盏,另一种是 40 瓦的白炽灯,售价为 18 元/盏。假设两种灯的照明效果一样,使用寿命都可以达到 2800 小时。已知小刚家所在地的电价是每千瓦时 0.5 元。(1).设照明时间是 x 小时,请用含 x 的代数式分别表示用一盏节能灯和用一盏白炽灯的费用。(费用=灯的售价+电费)(2).小刚想在这种灯中选购两盏。假定照明时间是 3000 小时,使用寿命都是 2800 小时。请你设计一种费用最低的选灯照明方案,并说明理由。