1、12.1 幂的运算,学习目标,课堂小结,巩固练习,例题讲解,回顾思考,学习六步曲,探究新知,学习目标,1、理解同底数幂的乘法性质并会用式子表示.,2、能主动探索并判断两个幂是否是同底幂,并能掌握指数是正整数时同底数幂的乘积.,你还记得吗?,指数,底数,幂,它的意义呢?,回顾思考,问题一 、光的速度为 3 千米/秒 ,太阳光照射到地球上大约需要 5 秒,地球距太阳大约多远?,问题二 、光在真空中的速度为 3 千米/秒,太阳系以外距地球最近的恒星是比邻星,它发出的光到达地球约4.22年,一年以3 秒计算,比邻星与地球距离约多少千米?,根据 路程 = 时间 速度 有,地球与太阳的距离 = 千米,比邻
2、星与地球的距离= 千米,探究新知,请同学们根据乘方的意义做下面一组题: 2324 (222)(2222)=2(7 ) 5354 =5555555=5( 7 ) a3a4 =aaaaaaa=a( 7 ),我们观察 可以 发现, 和 这两个因数底数相同,是同底的幂的形式所以我们把 这种运算叫做,同底数幂的乘法,计算下列各式:,(m,n都是正整数),你发现了什么?计算前后底数和指数有什么变化?用自己的语言描述,探究新知,=105,=1013,=10m+n,2m+n,同底数幂相乘,底数不变,指数相加,计算:,例题讲解,对前面两个问题如何解?,地球与太阳的距离 = 千米,比邻星与地球的距离 = 千米,千米,千米,例1:计算:,解:,例2:计算:,解:,底数(a-b)与(b-a)互为相反数,要利用符号的转化把他 们转化为相同的底数.,例3:计算:,解:,练习:,0,课时小结,这节课我们学习了同底数幂的乘法的运算性质,你有何新的收获和体会?,(m,n都是正整数),课时作业,习题,