【考研类试卷】考研数学一(线性方程组)-试卷4及答案解析.doc

上传人:sumcourage256 文档编号:1394225 上传时间:2019-12-03 格式:DOC 页数:9 大小:206KB
下载 相关 举报
【考研类试卷】考研数学一(线性方程组)-试卷4及答案解析.doc_第1页
第1页 / 共9页
【考研类试卷】考研数学一(线性方程组)-试卷4及答案解析.doc_第2页
第2页 / 共9页
【考研类试卷】考研数学一(线性方程组)-试卷4及答案解析.doc_第3页
第3页 / 共9页
【考研类试卷】考研数学一(线性方程组)-试卷4及答案解析.doc_第4页
第4页 / 共9页
【考研类试卷】考研数学一(线性方程组)-试卷4及答案解析.doc_第5页
第5页 / 共9页
点击查看更多>>
资源描述

1、考研数学一(线性方程组)-试卷 4 及答案解析(总分:54.00,做题时间:90 分钟)一、选择题(总题数:8,分数:16.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_2.某五元齐次线性方程组的系数矩阵经初等变换,化为 (分数:2.00)A.1 个B.2 个C.3 个D.4 个3.已知 1 , 2 , 3 ,是非齐次线性方程组 Ab 的三个不同的解,那么下列向量 1 2 , 1 2 2 3 , (分数:2.00)A.4 个B.3 个C.2 个D.1 个4.已知 1 (1,1,1) T , 2 (1,2,0) T 是齐次方程组 A0 的基础解系,那么下

2、列向量中A0 的解向量是( )(分数:2.00)A.(1,1,3) TB.(2,1,3) TC.(2,2,5) TD.(2,2,6) T5.设 n 元齐次线性方程组 A0 的系数矩阵 A 的秩为 r,则 A0 有非零解的充分必要条件是( )(分数:2.00)A.rnB.rnC.rnD.rn6.已知 4 阶方阵 A( 1 , 2 , 3 , 4 ), 1 , 2 , 3 , 4 均为 4 维列向量,其中 1 , 2 线性无关,若 1 2 2 3 , 1 2 3 4 ,2 1 3 2 3 2 4 ,k 1 ,k 2 为任意常数,那么 A 通解为( ) (分数:2.00)A.B.C.D.7.已知 1

3、 , 2 是非齐次线性方程组 Ab 的两个不同的解, 1 , 2 是对应的齐次线性方程A0 的基础解系,k 1 ,k 2 为任意常数,则方程组 Ab 的通解是( )(分数:2.00)A.k 1 1 k 2 ( 1 2 ) B.k 1 1 k 2 ( 1 2 ) C.k 1 1 k 2 ( 1 2 ) D.k 1 1 k 2 ( 1 2 ) 8.三元一次方程组 所代表的三个平面的位置关系为( ) (分数:2.00)A.B.C.D.二、填空题(总题数:7,分数:14.00)9.设 A 为 33 矩阵,且方程组 A0 的基础解系含有两个解向量,则 r(a) 1(分数:2.00)填空项 1:_10.设

4、 A 是一个五阶矩阵,A * 是 A 的伴随矩阵,若 1 , 2 是齐次线性方程组 A0 的两个线性无关的解,则 r(A) * 1(分数:2.00)填空项 1:_11.设 A (分数:2.00)填空项 1:_12.方程组 (分数:2.00)填空项 1:_13.设 A (分数:2.00)填空项 1:_14.已知方程组 (分数:2.00)填空项 1:_15.已知方程组 (分数:2.00)填空项 1:_三、解答题(总题数:12,分数:24.00)16.解答题解答应写出文字说明、证明过程或演算步骤。(分数:2.00)_17.设 AE T ,其中 E 是 n 阶单位矩阵, 是 n 维非零列向量, T 是

5、 的转置 证明:(1)A 2 A 的充分条件是 T 1; (2)当 T 1 时,A 是不可逆矩阵(分数:2.00)_18.已知方程组 的一个基础解系为(b 11 ,b 12 ,b 1,2n ) T ,(b 21 ,b 22 ,b 2,2n ) T ,(b n1 ,b n2 ,b n,2n ) T 试写出线性方程组 (分数:2.00)_19.设 1 , 2 , s 为线性方程组 A0 的一个基础解系, 1 t 1 1 t 2 2 , 2 t 1 2 t 2 3 , s t 1 s t 2 1 其中 t 1 ,t 2 为实常数试问 t 1 ,t 2 满足什么条件时, 1 , 2 , s 也为 A0

6、 的一个基础解系(分数:2.00)_20.已知平面上三条不同直线的方程分别为 l 1 a2by3c0, l 2 b2cy3a0, l 3 c2ay3b0, 试证这三条直线交于一点的充分必要条件为 abc0(分数:2.00)_21.求下列齐次线性方程组的基础解系: (分数:2.00)_22.求一个齐次线性方程组,使它的基础解系为 1 (0,1,2,3) T , 2 (3,2,1,0) T (分数:2.00)_23.设四元齐次线性方程组 (分数:2.00)_24.设 A (分数:2.00)_25.设 (分数:2.00)_26.已知齐次线性方程组 (分数:2.00)_27.已知 A 是 mn 矩阵,

7、其 m 个行向量是齐次线性方程组 C0 的基础解系,B 是 m 阶可逆矩阵,证明:BA 的行向量也是齐次方程组 C0 的基础解系(分数:2.00)_考研数学一(线性方程组)-试卷 4 答案解析(总分:54.00,做题时间:90 分钟)一、选择题(总题数:8,分数:16.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_解析:2.某五元齐次线性方程组的系数矩阵经初等变换,化为 (分数:2.00)A.1 个B.2 个 C.3 个D.4 个解析:解析:因为系数矩阵的秩 r(A)3,有 nr(A)532,故应当有 2 个自由变量 由于去掉 4 , 5 两列之后,所

8、剩三阶矩阵为 ,因为其秩与 r(A)不相等,故 4 , 5 不是自由变量同理, 3 , 5 不能是自由变量 而 1 , 5 与 2 , 3 均可以是自由变量,因为行列式 3.已知 1 , 2 , 3 ,是非齐次线性方程组 Ab 的三个不同的解,那么下列向量 1 2 , 1 2 2 3 , (分数:2.00)A.4 个 B.3 个C.2 个D.1 个解析:解析:由 A i b(i1,2,3)有 A( 1 2 )A 1 A 2 bb0, A( 1 2 2 3 )A 1 A 2 2A 3 bb2b0, A 0, A( 1 3 2 2 3 )A 1 3A 2 2A 3 b3b2b0, 那么, 1 2

9、, 1 2 2 3 , 4.已知 1 (1,1,1) T , 2 (1,2,0) T 是齐次方程组 A0 的基础解系,那么下列向量中A0 的解向量是( )(分数:2.00)A.(1,1,3) TB.(2,1,3) T C.(2,2,5) TD.(2,2,6) T解析:解析:如果 A 选项是 A0 的解,则 D 选项必是 A0 的解因此选项 A、D 均不是 A0 的解 由于 1 , 2 是 A0 的基础解系,那么 1 , 2 可表示 A0 的任何一个解 ,亦即方程组 1 1 2 2 必有解,因为 5.设 n 元齐次线性方程组 A0 的系数矩阵 A 的秩为 r,则 A0 有非零解的充分必要条件是(

10、 )(分数:2.00)A.rnB.rnC.rn D.rn解析:解析:将矩阵 A 按列分块,A( 1 , 2 , n ),则 A0 的向量形式为 1 1 2 2 n n 0, 而 A0 有非零解 1 , 2 , n 线性相关 r( 1 , 2 , n )n 6.已知 4 阶方阵 A( 1 , 2 , 3 , 4 ), 1 , 2 , 3 , 4 均为 4 维列向量,其中 1 , 2 线性无关,若 1 2 2 3 , 1 2 3 4 ,2 1 3 2 3 2 4 ,k 1 ,k 2 为任意常数,那么 A 通解为( ) (分数:2.00)A.B. C.D.解析:解析:由 1 2 2 3 知 7.已知

11、 1 , 2 是非齐次线性方程组 Ab 的两个不同的解, 1 , 2 是对应的齐次线性方程A0 的基础解系,k 1 ,k 2 为任意常数,则方程组 Ab 的通解是( )(分数:2.00)A.k 1 1 k 2 ( 1 2 ) B.k 1 1 k 2 ( 1 2 ) C.k 1 1 k 2 ( 1 2 ) D.k 1 1 k 2 ( 1 2 ) 解析:解析:对于 A、C 选项,因为 所以选项 A、C 中不含有非齐次线性方程组 Ab 的特解,故均不正确 对于选项 D,虽然( 1 2 )是齐次线性方程组 A0 的解,但它与 1 不一定线性无关,故 D 也不正确,所以应选 B 事实上,对于选项 B,由

12、于 1 ( 1 2 )与 1 , 2 等价(显然它们能够互相线性表示),故 1 ,( 1 2 )也是齐次线性方程组的一组基础解系,而由 可 8.三元一次方程组 所代表的三个平面的位置关系为( ) (分数:2.00)A.B.C. D.解析:解析:设方程组的系数矩阵为 A,对增广矩阵 作初等行变换,有 因为 r(A)2,而 r( 二、填空题(总题数:7,分数:14.00)9.设 A 为 33 矩阵,且方程组 A0 的基础解系含有两个解向量,则 r(a) 1(分数:2.00)填空项 1:_ (正确答案:正确答案:1)解析:解析:由线性方程组的基础解系所含解向量的个数与系数矩阵的秩的和等于未知数的个数

13、,且本题系数矩阵为 33 阶,因此 r(A)nr32110.设 A 是一个五阶矩阵,A * 是 A 的伴随矩阵,若 1 , 2 是齐次线性方程组 A0 的两个线性无关的解,则 r(A) * 1(分数:2.00)填空项 1:_ (正确答案:正确答案:0)解析:解析: 1 , 2 是齐次线性方程组 A0 的两个线性无关的解因此由方程组的基础解系所含解向量的个数与系数矩阵秩的关系,因此有 nr(A)2,即 r(A)3又因为 A 是五阶矩阵,而 r(A)3,因此A的 4 阶子式一定全部为 0,因此代数余子式 A ij ,恒为零,即 A * O,所以 r(A * )011.设 A (分数:2.00)填空

14、项 1:_ (正确答案:正确答案:1 或 5)解析:解析:解空间是二维的,即 A0 的基础解系由两个向量组成,因此 nr(A)2,即 r(A)2,对矩阵 A 作初等变换有12.方程组 (分数:2.00)填空项 1:_ (正确答案:正确答案:1)解析:解析:一个齐次线性方程组有非零解的充分必要条件是方程组的系数矩阵对应的行列式等于零,即13.设 A (分数:2.00)填空项 1:_ (正确答案:正确答案:k 1 (1,2,1) T k 2 (1,0,1) T)解析:解析:A 是一个 3 阶矩阵,由已知得A0,且 r(A)2,因此 r(A * )1,那么可知 nr(A * )312,因此 A *

15、0 有两个基础解系,其通解形式为 k 1 1 k 2 2 又因为 A * AAE0,因此矩阵 A 的列向量是 A * 0 的解,故通解是 k 1 (1,2,1) T k 2 (1,0,1) T 14.已知方程组 (分数:2.00)填空项 1:_ (正确答案:正确答案:1 且 *)解析:解析:对于任意的 b 1 ,b 2 ,b 3 ,方程组有解的充分必要条件是系数矩阵 A 的秩为 3,即A0,由 A (54)(1)0, 可知 1 且 15.已知方程组 (分数:2.00)填空项 1:_ (正确答案:正确答案:3)解析:解析:线性方程组 Ab 有解的充分必要条件是 r(A)r( ),而有无穷多解的充

16、分必要条件是 r(A)r( )n,对增广矩阵作初等行变换,有三、解答题(总题数:12,分数:24.00)16.解答题解答应写出文字说明、证明过程或演算步骤。(分数:2.00)_解析:17.设 AE T ,其中 E 是 n 阶单位矩阵, 是 n 维非零列向量, T 是 的转置 证明:(1)A 2 A 的充分条件是 T 1; (2)当 T 1 时,A 是不可逆矩阵(分数:2.00)_正确答案:(正确答案:(1)A 2 (E T )(E T )E2 T ( T ) T (2 T ) T , 因此 A 2 A E(2 T ) T E T )解析:18.已知方程组 的一个基础解系为(b 11 ,b 12

17、 ,b 1,2n ) T ,(b 21 ,b 22 ,b 2,2n ) T ,(b n1 ,b n2 ,b n,2n ) T 试写出线性方程组 (分数:2.00)_正确答案:(正确答案:由题意可知,线性方程组()的通解为 yc 1 (a 11 ,a 12 ,a 1,2n ) T c 2 (a 21 ,a 22 ,a 2,2n ) T c n (a n1 ,a n2 ,a n,2n ) T , 其中 c 1 ,c 2 ,c n 是任意的常数 这是因为: 方程组()和()的系数矩阵分别为 A,B,则根据题意可知 AB T 0,因此 BA T (AB T ) T 0。 可见 A 的 n 个行向量的转

18、置为()的 n 个解向量 由于 B 的秩为n,因此()的解空间的维数为 2nr(B)2nnn,又因为 A 的秩是 2n 与 ()的解空间的维数的差,即 n,因此 A 的 n 个行向量是线性无关的,从而它们的转置向量构成 ()的一个基础解系,因此得到()的上述的一个通解)解析:19.设 1 , 2 , s 为线性方程组 A0 的一个基础解系, 1 t 1 1 t 2 2 , 2 t 1 2 t 2 3 , s t 1 s t 2 1 其中 t 1 ,t 2 为实常数试问 t 1 ,t 2 满足什么条件时, 1 , 2 , s 也为 A0 的一个基础解系(分数:2.00)_正确答案:(正确答案:因

19、为 i (i1,2,s)是 1 , 2 , s 的线性组合,且 1 , 2 , s 是 A0 的解据齐次线性方程组解的性质知 i (i1,2,s)均为 A0 的解 从 1 , 2 , s 是 A0 的基础解系知 snr(A) 以下分析 1 , 2 , s 线性无关的条件: 设 k 1 1 k 2 2 k s s 0,即 (t 1 k 1 t 2 k s ) 1 (t 2 k 1 t 1 k 2 ) 2 (t 2 k 2 t 1 k 3 ) 3 (t 2 k s-1 t 1 k s ) s 0, 由于 1 , 2 , s 线性无关,因此有 又因系数行列式 )解析:20.已知平面上三条不同直线的方

20、程分别为 l 1 a2by3c0, l 2 b2cy3a0, l 3 c2ay3b0, 试证这三条直线交于一点的充分必要条件为 abc0(分数:2.00)_正确答案:(正确答案:必要性:设三条直线 l 1 ,l 2 ,l 3 交于一点,则其线性方程组 有唯一解,故系数矩阵 A 与增广矩阵 的秩均为 2,于是 0。 因为 6(abc)(a 2 b 2 c 2 abacbc) 3(abc)(ab) 2 (bc) 2 (ca) 2 , 但根据题设可知(ab) 2 (bc) 2 (ca) 2 0,故 abc0 充分性:由 abc0,则从必要性的证明中可知, 0,故 r( )3由于 故 r(A)2于是,

21、 r(A)r( )解析:21.求下列齐次线性方程组的基础解系: (分数:2.00)_正确答案:(正确答案:(1) r(A)2因此基础解系的个数为 422,又原方程组等价于 取 3 1, 4 5,得 1 4, 2 2;取 3 0, 4 4,得 1 0, 2 1 因此基础解系为 (2) r(A)2,基础解系的个数为 422, 又原方程组等价于 取 3 1, 4 2 得 1 0, 2 0;取 3 0, 4 19,得 1 1, 2 7 因此基础解系为 (3)记 A(n,n1,1),可见 r(A)1,从而有 n1 个线性无关的解构成此方程的基础解系,原方程组为 n n 1 (n1) 2 2 n-1 ,

22、取 1 1, 2 3 n-1 0,得 n n; 取 2 1, 1 3 4 n-1 0,得 n (n1)n1; 取 n-1 1, 1 2 n-2 0,得 n 2 所以基础解系为 ( 1 , 2 , n-1 ) )解析:22.求一个齐次线性方程组,使它的基础解系为 1 (0,1,2,3) T , 2 (3,2,1,0) T (分数:2.00)_正确答案:(正确答案:设所求齐次方程为 A0, 1 , 2 是 4 维列向量,基础解系含有 2 个向量,因此 r(A)422,即方程的个数大于等于 2 记 B( 1 , 2 ),且 A 的基础解系为 1 , 2 ,因此有 AB0,且 r(A)2 即 B T

23、A T 0 且 r(A T )2, 所以 A T 的列向量就是 B T 0 的一个基础解系 B T ( 1 , 2 ) T 得基础解系 A 对应其次线性方程组为 )解析:23.设四元齐次线性方程组 (分数:2.00)_正确答案:(正确答案:(1)求方程组的基础解系: 系数矩阵为 分别取 ,其基础解系可取为 求方程的基础解系: 系数矩阵为 分别取 ,其基础解系可取为 (2)设( 1 , 2 , 3 , 4 ) T 为与的公共解,用两种方法求 的一般表达式: 是与的公共解,因此 是方程组的解,方程组为与合并的方程组,即 其系数矩阵 取其基础解系为(1,1,2,1) T ,于是与的公共解为 )解析:

24、24.设 A (分数:2.00)_正确答案:(正确答案:(1)对增广矩阵(A 1 )作初等行变换,则 得 A0 的基础解系(1,1,2) T 或者 A 1 的特解(0,0,1) T 故 2 (0,0,1) T k(1,1,2) T 或 2 (k,k,2k1) T ,其中 k 为任意常数 由于 A 2 ,对增广矩阵(A 2 1 )作初等行变换,有 得 A 2 0 的基础解系(1,1,0) T ,(0,0,1) T 又 A 2 1 有特解( ,0,0) T 故 3 ( ,0,0) T t 1 (1,1,0) T t 2 (0,0,1) T 或 3 ( t,t,t) T ,其中 t 1 ,t 2 为

25、任意常数 (2)因为 )解析:25.设 (分数:2.00)_正确答案:(正确答案:(1)由已知可得,线性方程组 Ab 有两个不同的解,则 r(A)r( )n 则有 A (1)(1) 2 0 可得 1 或 1 当 1 时,有 r(A)1,r( )2,此时线性方程组无解 当 1 时, 若 a2,则 r(A)r(*)2,方程组Ab 有无穷多解 故 1,a2 (2)当 1,a2 时, 所以方程组 Ab 的通解为 )解析:26.已知齐次线性方程组 (分数:2.00)_正确答案:(正确答案:由于方程组()中“方程个数未知数个数”,所以方程组()必有非零解那么方程组 ()必有非零解()的系数行列式为 0,即

26、 对方程组()的系数矩阵作初等行变换,有 则方程组()的通解是 k(1,1,1) T 因为(1,1,1) T 是方程组()的解,则有 当 b1,c2 时,方程组()为 其通解是 k(1,1,1) T ,所以方程组()与()同解 当 b0,c1 时,方程组()为 )解析:27.已知 A 是 mn 矩阵,其 m 个行向量是齐次线性方程组 C0 的基础解系,B 是 m 阶可逆矩阵,证明:BA 的行向量也是齐次方程组 C0 的基础解系(分数:2.00)_正确答案:(正确答案:由已知可得 A 的行向量是 C0 的解,即 CA T 0则 C(BA) T =CA T B T 0B T 0可见 BA 的行向量是方程组 C0 的解 由于 A 的行向量是基础解系,所以 A 的行向量线性无关,于是 mr(a)nr(C) 又因为 B 是可逆矩阵,r(BA)r(a)mnr(C),所以 BA 的行向量线性无关,其向量个数正好是 nr(C),从而是方程组 C0 的基础解系)解析:

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 考试资料 > 大学考试

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1