1、2010-2011年广西南宁沛鸿民族中学高一下学期期中考试数学 选择题 sin2100 =( ) A B - C D - 答案: D 函数 的图象为 C,: 图象 关于直线 对称 ; 函数 在区间 内是增函数 ; 由 的图象向右平移 个单位长度可以得到图象 . 以上三个论断中正确论断的个数为( ) A 0 B 1 C 2 D 3 答案: C .如果函数 的图像关于点 中心对称,那么 的最小值为( ) A B C D 答案: A 考点:函数 y=Asin( x+)的图象变换;余弦函数的对称性 分析:先根据函数 y=3cos( 2x+)的图象关于点 中心对称,令 x= 代入函数使其等于 0,求出
2、的值,进而可得 |的最小值 解: 函数 y=3cos( 2x+)的图象关于点 ( , 0)中心对称 2 +=k+ =k- (k Z)由此易得 |min= 故选 A 为三角形 ABC的一个内角 ,若 ,则这个三角形的形状为( ) A锐角三角形 B钝 角三角形 C等腰直角三角形 D等腰三角形 答案: B 若 ,则 等于( ) A B C D 答案: A 若 tan(+)= ,tan(- )= ,则 tan(+ )等于( ) A B C D 答案: C 下列关系式中正确的是( ) A B C D 答案: C 考点:正弦函数的单调性 分析:先根据诱导公式得到 sin168=sin12和 cos10=s
3、in80,再结合正弦函数的单调性可得到 sin11 sin12 sin80从而可确定答案: 解: sin168=sin( 180-12) =sin12, cos10=sin( 90-10) =sin80 又 y=sinx在 x 0, 上是增函数, sin11 sin12 sin80,即 sin11 sin168 cos10 故选 C 函数 的单调增区间为( ) A B C D 答案: C 函数 的最小正周期为( ) A B C D 答案: B 已知 的值为( ) A -2 B 2 CD - 答案: D 若 cosx=- , x 0,,则 x的值为( ) A arccos B -arccos C
4、 -arccos D +arccos 答案: B 扇形的半径变为原来的 2倍,而弧长也增加到原来的 2倍,则( ) A扇形的面积不变 B扇形的圆心角不变 C扇形的面积增大到原来的 2倍 D扇形的圆心角增大到原来的 2倍 答案: B 填空题 已知 ,且 ,则 = 答案: 若 , .则 答案: /2 sin150cos30+cos150sin30的值为 答案: 函数 f(x) sin x +sin(+x)的最大值是 答案: 解答题 .(本题满分 10分) 已知 ,求 的值。 答案: ; ; ; ; (本题满分 12分) 求证: 答案:略 (本题满分 12分) 已知 ( )求 的值; ( )求 的值
5、。 答案: ( )由 ,得 ,所以 。 ( ) , (本题满分 12分) 如图为函数 y=Asin(x+)(A 0, 0)的图象的一部分,试求该函数的一个式 . 答案:解 由图可得: A= , T=2 MN =. 从而 = =2,故 y= sin(2x+), 将 M( , 0)代入得 sin( +)=0, 取 =- 得 y= sin(2x- ) (本题满分 12分) 已知函数 , .求 : (I) 函数 的最大值及取得最大值的自变量 的集合; (II) 函数 的单调增区间 . 答案: (I) 解法一 : 当 ,即 时 , 取得最大值 . 函数 的取得最大值的自变量 的集合为 . 解法二 : 当 ,即 时 , 取得最大值 . 函数 的取得最大值的自变量 的集合为 . (II)解 : 由题意得 : 即 : 因此函数 的单调增区间为. (本题满 分 12分) 已知函数 f(x)=A (A0, 0,0 函数,且 y=f(x)的最大值为 2,其图象相邻两对称轴间的距离为 2,并过点( 1, 2) . ( 1)求 ; ( 2)计算 f(1)+f(2)+ +f(2 008). 答案:解:( I) 的最大值为 2, . 又 其图象相邻两对称轴间的距离为 2, , . 过 点, 又 . ( II)解法一: , . 又 的周期为 4, , 解法二: 又 的周期为 4, ,