ASTM F1962-2011 Standard Guide for Use of Maxi-Horizontal Directional Drilling for Placement of Polyethylene Pipe or Conduit Under Obstacles Including River Crossings《安装聚乙烯管或在障碍物 包.pdf

上传人:bowdiet140 文档编号:536159 上传时间:2018-12-06 格式:PDF 页数:18 大小:233.95KB
下载 相关 举报
ASTM F1962-2011 Standard Guide for Use of Maxi-Horizontal Directional Drilling for Placement of Polyethylene Pipe or Conduit Under Obstacles Including River Crossings《安装聚乙烯管或在障碍物 包.pdf_第1页
第1页 / 共18页
ASTM F1962-2011 Standard Guide for Use of Maxi-Horizontal Directional Drilling for Placement of Polyethylene Pipe or Conduit Under Obstacles Including River Crossings《安装聚乙烯管或在障碍物 包.pdf_第2页
第2页 / 共18页
ASTM F1962-2011 Standard Guide for Use of Maxi-Horizontal Directional Drilling for Placement of Polyethylene Pipe or Conduit Under Obstacles Including River Crossings《安装聚乙烯管或在障碍物 包.pdf_第3页
第3页 / 共18页
ASTM F1962-2011 Standard Guide for Use of Maxi-Horizontal Directional Drilling for Placement of Polyethylene Pipe or Conduit Under Obstacles Including River Crossings《安装聚乙烯管或在障碍物 包.pdf_第4页
第4页 / 共18页
ASTM F1962-2011 Standard Guide for Use of Maxi-Horizontal Directional Drilling for Placement of Polyethylene Pipe or Conduit Under Obstacles Including River Crossings《安装聚乙烯管或在障碍物 包.pdf_第5页
第5页 / 共18页
亲,该文档总共18页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、Designation: F1962 11An American National StandardStandard Guide forUse of Maxi-Horizontal Directional Drilling for Placement ofPolyethylene Pipe or Conduit Under Obstacles, IncludingRiver Crossings1This standard is issued under the fixed designation F1962; the number immediately following the desig

2、nation indicates the year oforiginal adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope*1.1 This guide describes the desig

3、n, selection consider-ations, and installation procedures for the placement of poly-ethylene pipe or conduit below ground using maxi-horizontaldirectional drilling equipment. The pipes or conduits may beused for various applications including telecommunications,electric power, natural gas, petroleum

4、, water lines, sewer lines,or other fluid transport.1.2 Horizontal directional drilling is a form of trenchlesstechnology. The equipment and procedures are intended tominimize surface damage, restoration requirements, and dis-ruption of vehicular or maritime traffic with little or nointerruption of

5、other existing lines or services. Mini-horizontaldirectional drilling (min-HDD) is typically used for the rela-tively shorter distances and smaller diameter pipes associatedwith local utility distribution lines. In comparison, maxi-horizontal directional drilling (maxi-HDD) is typically used forlong

6、er distances and larger diameter pipes common in majorriver crossings. Applications that are intermediate to themini-HDD or maxi-HDD categories may utilize appropriate“medi” equipment of intermediate size and capabilities. In suchcases, the design guidelines and installation practices wouldfollow th

7、ose described for the mini- or maxi-HDD categories,as judged to be most suitable for each situation.1.3 The values stated in inch-pound units are to be regardedas standard. The values given in parentheses are mathematicalconversions to SI units that are provided for information onlyand are not consi

8、dered standard.1.4 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of the regulatory limitations prior to

9、use. Section 6contains general safety information related to the use ofmaxi-horizontal directional drilling equipment.2. Referenced Documents2.1 ASTM Standards:2D420 Guide to Site Characterization for Engineering De-sign and Construction PurposesD422 Test Method for Particle-Size Analysis of SoilsD1

10、586 Test Method for Penetration Test (SPT) and Split-Barrel Sampling of SoilsD1587 Practice for Thin-Walled Tube Sampling of Soils forGeotechnical PurposesD2113 Practice for Rock Core Drilling and Sampling ofRock for Site InvestigationD2166 Test Method for Unconfined Compressive Strengthof Cohesive

11、SoilD2435 Test Methods for One-Dimensional ConsolidationProperties of Soils Using Incremental LoadingD2447 Specification for Polyethylene (PE) Plastic Pipe,Schedules 40 and 80, Based on Outside Diameter3D2513 Specification for Polyethylene (PE) Gas PressurePipe, Tubing, and FittingsD2850 Test Method

12、 for Unconsolidated-Undrained TriaxialCompression Test on Cohesive SoilsD3035 Specification for Polyethylene (PE) Plastic Pipe(DR-PR) Based on Controlled Outside DiameterD4186 Test Method for One-Dimensional ConsolidationProperties of Saturated Cohesive Soils Using Controlled-Strain LoadingD4220 Pra

13、ctices for Preserving and Transporting SoilSamplesD4318 Test Methods for Liquid Limit, Plastic Limit, andPlasticity Index of Soils1This guide is under the jurisdiction of ASTM Committee F17 on Plastic PipingSystems and is the direct responsibility of Subcommittee F17.67 on TrenchlessPlastic Pipeline

14、 Technology.Current edition approved May 1, 2011. Published May 2011. Last previousedition approved in 2005 as F1962051. DOI: 10.1520/F1962-11.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards vo

15、lume information, refer to the standards Document Summary page onthe ASTM website.3Withdrawn. The last approved version of this historical standard is referencedon www.astm.org.1*A Summary of Changes section appears at the end of this standard.Copyright ASTM International, 100 Barr Harbor Drive, PO

16、Box C700, West Conshohocken, PA 19428-2959, United States.D4767 Test Method for Consolidated Undrained TriaxialCompression Test for Cohesive SoilsD5084 Test Methods for Measurement of Hydraulic Con-ductivity of Saturated Porous Materials Using a FlexibleWall PermeameterF714 Specification for Polyeth

17、ylene (PE) Plastic Pipe(SDR-PR) Based on Outside DiameterF1804 Practice for DeterminingAllowable Tensile Load forPolyethylene (PE) Gas Pipe During Pull-In InstallationF2620 Practice for Heat Fusion Joining of PolyethylenePipe and Fittings2.2 Other Standards:ANSI Preferred Number Series 10ANSI/EIA/TI

18、A-590 Standard for Physical Location andProtection of Below-Ground Fiber Optic Cable Plant4OSHA-3075 Controlling Electrical Hazards5TR-NWT-000356 Generic Requirements for Optical CableInnerduct63. Terminology3.1 Definitions:3.1.1 horizontal directional drilling, HDD, na techniquefor installing pipes

19、 or utility lines below ground using asurface-mounted drill rig that launches and places a drill stringat a shallow angle to the surface and has tracking and steeringcapabilities.3.1.1.1 DiscussionThe drill string creates a pilot bore holein an essentially horizontal path or shallow arc which maysub

20、sequently be enlarged to a larger diameter during a second-ary operation which typically includes reaming and thenpullback of the pipe or utility line. Tracking of the initial borepath is accomplished by a manually operated overhead receiveror a remote tracking system. Steering is achieved by contro

21、l-ling the orientation of the drill head which has a directionalbias and pushing the drill string forward with the drill headoriented in the direction desired. Continuous rotation of thedrill string allows the drill head to bore a straight path. Theprocedure uses fluid jet or mechanical cutting, or

22、both, with alow, controlled volume of drilling fluid flow to minimize thecreation of voids during the initial boring or backreamingoperations. The drilling fluid helps stabilize the bore hole,remove cuttings, provide lubricant for the drill string andplastic pipe, and cool the drill head. The result

23、ant slurrysurrounds the pipe, typically filling the annulus between thepipe and the bored cavity.3.1.2 maxi-horizontal directional drilling, maxi-HDD, naclass of HDD, sometimes referred to as directional drilling, forboring holes of up to several thousand feet in length andplacing pipes of up to 48

24、in. (114 m) diameter or greater atdepths up to 200 ft (60 m).3.1.2.1 DiscussionMaxi-HDD is appropriate for placingpipes under large rivers or other large obstacles (Fig. 1).Tracking information is provided remotely to the operator ofthe drill rig by sensors located towards the leading end of thedril

25、l string. Cutting of the pilot hole and expansion of the holeis typically accomplished with a bit or reamer attached to thedrill pipe, which is rotated and pulled by the drilling rig.3.1.3 mini-horizontal directional drilling, mini-HDD, naclass of HDD, sometimes referred to as guided boring, forbori

26、ng holes of up to several hundred feet in length and placingpipes of typically 12 in. (300 mm) or less nominal diameter atdepths typically less than 25 ft (7 m).3.1.3.1 DiscussionPolyethylene pipe selection and usagefor mini-HDD is discussed extensively in the Plastics PipeInstitutes (PPI) TR-46, “G

27、uidelines for Use of Mini-Horizontal Directional Drilling for Placement of High DensityPolyethylene Pipe.” (1)73.1.3.2 DiscussionMini-HDD is appropriate for placinglocal distribution lines (including service lines or laterals)beneath local streets, private property, and along right-of-ways.The creat

28、ion of the pilot bore hole and the reaming operationsare typically accomplished by fluid jet cutting or the cuttingtorque provided by rotating the drill string, although mudmotors powered by the drilling fluid are sometimes used forhard or rocky soil conditions. The use of such mud motorswould only

29、be applicable for the larger mini-HDD machines.The locating and tracking systems typically require a manuallyoperated overhead receiver to follow the progress of the initialpilot bore. The receiver is placed above the general vicinity of4Available from the Electronics IndustriesAssociation, 2001 Pen

30、nsylvaniaAve.,N.W., Washington, DC, 20006.5Available from the Occupational Health and Safety Administration, 200Constitution Ave. N.W. Washington, DC 20210.6Available from Bellcore, 60 New England Ave., Room 1B252, Piscataway, NJ,08854-4196.7The boldface numbers in parentheses refer to the list of r

31、eferences at the end ofthis standard.FIG. 1 Maxi-HDD for Obstacle (for example, River) CrossingF1962 112the drill head to allow a determination of its precise locationand depth, indicate drill head orientation for determiningsteering information to be implemented from the drill rig.3.1.4 pipe dimens

32、ion ratio, DR, nthe average specifieddiameter of a pipe divided by the minimum specified wallthickness.3.1.4.1 DiscussionFor pipes manufactured to a controlledoutside diameter (OD), the DR is the ratio of pipe outerdiameter to minimum wall thickness. The standard dimensionratio (SDR) is a specific r

33、atio of the outside diameter to theminimum wall thickness as specified by ANSI PreferredNumber Series 10.NOTE 1Lower DR values correspond to thicker, stronger pipes.4. Preliminary Site Investigation4.1 General ConsiderationsAmaxi-HDD project, such asthat associated with a river crossing, is a major

34、event that willrequire extensive and thorough surface and subsurface inves-tigations. Qualified geotechnical engineers should perform thework for the owner in preparation for planning and designingof the bore route. The information should also be provided tothe potential contractors to provide guida

35、nce for the biddingstage and subsequent installation. The contractor may performadditional investigations, as desired. Since typical maxi-HDDprojects represent river crossings, the following procedures aredescribed in terms of the specific investigations and issuesarising in such cases. The general

36、procedures, however, may beappropriately interpreted to also apply to non-river crossings,such as under land-based obstacles including highways, rail-ways, etc.4.2 Surface Investigation (2, 3)4.2.1 Topographic SurveyA survey should be conductedto accurately define the working areas described in 4.1

37、for theproposed crossing site. Horizontal and vertical references mustbe established for referencing hydrographic and geotechnicaldata. The survey should typically include overbank profiles onthe anticipated path center-line, extending about 150 ft (75 m)landward of the bore entry point to the lengt

38、h of the (pre-fabricated) pull section landward of the bore exit point. Thesurvey information should be related to topographical featuresin the vicinity of the proposed crossing. Existing topographicalinformation may be available from the U.S. Geological Survey,or Federal, state, or county publicati

39、ons. Aerial photographs orordnance surveys may be useful, especially for crossingland-based obstacles in urban areas, since these may indicatethe presence of demolished buildings and the possibility of oldfoundations, as well any filled areas (4). It is also necessary tocheck available utility recor

40、ds to help identify the preciselocation of existing below-ground facilities in the vicinity,including electric power, natural gas, petroleum, water, sewer,or telecommunications lines. The presence of existing pipe-lines, support pilings, etc., containing significant steel massshould be noted since t

41、his may cause interference with mag-netically sensitive equipment guidance or location instrumen-tation.4.2.1.1 Drill Rig (Bore Entry) SideThe available arearequired on the side of the drill rig must be sufficient for the rigitself and its ancillary equipment. In general, the size of therequired are

42、a on the rig side will depend upon the magnitude ofthe operation, including length of bore and diameter of pipe tobe placed. Typically, a temporary workspace of approximately150 ft (45 m) width by 250 ft (75 m) length will be sufficient.These dimensions may vary from 100 by 150 ft (30 by 45 m)for sh

43、orter crossings of 1000 ft (300 m) or less, to 200 by 300ft (60 by 90 m) for medium or long crossings.4.2.1.2 Water SupplyWater storage and facilities for mix-ing, storing, and pumping drilling fluid will require significantspace. Although it is standard practice to draw fresh waterfound at the loca

44、tion for mixing the drilling fluid, alternatewater supplies may be required to obtain proper drilling fluidcharacteristics. Hard or salty water is undesirable, althoughadditives may be used to create the proper pH value. It may benecessary to provide access for trucks to transport water or toprovide

45、 for the installation of a relatively long surface pipe orhose connecting a remote hydrant.4.2.1.3 Pipe (Bore Exit) SideAssuming the pipe to beplaced is too large a diameter to be supplied on a reel (forexample, larger than 6 in. (150 mm), sufficient space isrequired at the side opposite that of the

46、 drill rig, where the borewill exit and the pipe be inserted, to accommodate a continuousstraight length of pre-fabricated pipe. The space for the straightlength will begin approximately 50 to 100 ft (15 to 30 m) fromthe anticipated bore exit and extend straight landward at awidth of 35 to 50 ft (10

47、 to 15 m), depending upon the pipediameter. In the immediate vicinity of the bore exit (pipeentry), an area of typically 50 ft (15 m) width by 100 ft (30 m)length is required; for relatively large diameter pipes (largerthan 24 in. (600 mm), or in cases of difficult soil conditions, anarea of 100 ft

48、(30 m) width by 150 ft (45 m) length should beprovided.4.2.2 Hydrographic/Potamological SurveyFor crossingsignificant waterways, a survey should be conducted to accu-rately describe the bottom contours and river stability toestablish suitability for the design life of the pipeline. Typi-cally, depth

49、s should be established along the anticipatedcenter-line, and approximately 200 ft (60 m) upstream anddownstream; closer readings may be required if it is necessaryto monitor future river activity. Consideration should be givento future changes in river bank terrain. Washouts, bankmigrations, or scour can expose pipe.4.2.3 Drilling Fluid DisposalThe means for disposal ofthe drilling fluid wastes must be considered. The volume ofdrilling fluid used will depend upon the soil characteristics butis typically on the order of 1 to 3 times the volume of removedsoil. Mos

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 标准规范 > 国际标准 > ASTM

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1