1、 - GPA TP-18 8 U 3824699 0013597 OT e3 Technical Publication TP-18 GPA Experimental Enthalpy Values Referred To Two Base Levels From Excess Enthalpy Data Patsy Chappelear, P.E. October 1988 Gas Processors Association 6526 East 60th St. Tulsa, Okla. 74145 GPA TP-L 88 H 3824699 0033598 TLb = Foreword
2、Over the past two decades, GPA Enthalpy Research Projects have resulted in a mass of experimental pure component and mixture enthalpies for a wide variety of systems. have been related to a number of reference states. However, most of the published data, depending on source, In GPA Project 733, Prof
3、essor John Lenoir converted the entire body of GPA enthalpy data in 1974 to each of two common reference states. This work, including the conversion procedure, was published in RR-11. This work is an extension of that work by Patsy Chappelear, and includes conversion of experimental enthalpy data re
4、ported in RR-83, RR-97, and TP-7. i GPA TP-18 8 W 3824677 0033577 752 H TABLE OF CONTENTS Page Introduction. 1 References 3 Appendix 1 . Heats of Formation Data . 3 Carbon Dioxide. Water-Carbon Monoxide . 4 Enthalpy Values for Base Value of Ideal Gas at O Kelvin Water- Water-Hydrogen-Nitrogen-Methan
5、e-Carbon Monoxide-Carbon Dioxide . 10 Water.Ethy1ene.Ethane 11 Water-Propane-Butane 12 Water-Ethane 13 Water.Propane 15 Water.nButane . 17 Water-Methane-Carbon Dioxide 19 Water-Nitrogen . 20 Water-Argon . 22 Water-Hydrogen . 24 Water.Methane 26 Water-Nigrogen . 28 Water.Argon . 33 Water-Hydrogen . 3
6、6 Water.Methane 39 ii INTRODUCTION This work is a continuation of that begun by Professor John M. Lenoir and associates. The project involves calculations using the experimental heat of mixing data of Professor c. J. Wormald and associates to convert from SI units and to total enthalpy at two base l
7、evels. The theory for the calculations is fully discussed in FU?-11. The orginal experimental data are given in the reports of Professor Wormald. METHOD FOR THESE CALCULATIONS A spreadsheet method on a personal computer was used for the results presented here. Only the experimental data (not the smo
8、othed values) have been calculated. Refer to the orginal reports for discussion and graphs which show the scatter in the experimental data. Linear interpolation for the pure component enthalpy on a O Kelvin basis was used. with temperature and pressure. used: in most cases the four values bounded th
9、e temperature and pressure of the data point. However, in some cases the pure component enthalpy tables did not cover the range of the experimental data and extrapolation was required. cases are marked by notes on the tables of the results. This required a double interpolation A linear interpolation
10、 was These PURE COMPONENT ENTHALPY SOURCES For consistency with the earlier work of Professor Lenoir, in general the same source enthalpy values were used. 1 lists some of the key data for all of the compounds. Water: The ACME Steam Tables, Fifth Edition, based on IlThe 1967 IFC Formulation for Indu
11、strial Use in conformity with The 1963 International Skeleton Tables as adopted by the SIxth International Conference on the Properties of Steam1, were used. These tables report data at 10 degree F intervals. Pressure intervals are 2 psi up to 60 psia, 5 psi to 120 psia, 10 psi to 600 psia, 50 psi t
12、o 1200 psia, and 100 psi through the remainder of the range of these calculations. The only problem for the water calculations occurred when the data point was close to the phase break. interpolation/extrapolation was made using the next higher temperature values. Since the isothermal and isobaric b
13、ehavior of steam is linear for the,regions of these calculations, such methods are justified. NBS Enthalpy Data: The 1960 publication of Hilsenrath et al. carbon monoxide, hydrogen, and nitrogen. These tables provided (Ho - H) at O K and pressure and H* at 25 degrees C. The tables are in atm and K.
14、Temperature intervals are 10 K. Pressure intervals are non-linear, and vary with the gas. Appendix -. In those cases -. . . was used for enthalpy values for argon, corbon dioxide, -1- _ - - . GPA TP-LB 88 3824699 0013601 330 E For hydrogen, ideal gas enthalpy is reported at 1, 10, and 100 atm up to
15、600 K. The isobaric temperature behavior and the isothermal pressure behavior are linear. However, some of the conditions for these calculations were outside the boundaries of the tabular enthalpy data; extrapolation was used in those cases and noted on the tables. Both temperature and pressure extr
16、apolation were need for data at 648.2 and 698.2 K and for pressures greater than 100 atm (data were at 101 to 111 atm). For argon, enthalpy values are tabulated for 10 K intervals at i, 4, 7, 10, 40, 70, and 100 atm. The isobaric temperature behavior is linear, However, the isothermal pressure behav
17、ior is non-linear, as shown in Figure 1 for 700 K values, Since linear interpolation and extrapolation were used, the high pressure values for argon are questionable. For nitrogen, enthalpy values are also tabulated for 10 K intervals at 1, 4, 7, 10, 40, 70, and 100 atm. The behavior at 700 K is not
18、 as severe as for argon, Values for both carbon monoxide and carbon dioxide are also tabulated at the same intervals. Figure 1 indicates the behavior at 700 K is slightly non-linear for both gases. Enthalpy values for the hydrocarbons were obtained from tables prepared for API Research Project 44. F
19、or methane for the regions of these calculations, values are tabulated at O, 1500, and 2000 psia for the pertinent temperatures of 700, 900, and 1100 R. For ethane, enthalpy values are tabulated at the same pressures as methane in 20 degree increments up to 1000 R. Higher temperatures are 1200, 1400
20、, and 1600 R. For propane, the intervals are closer. Pressures used are 14.696, 50, loo,. to 550 psia, then 20 psi intervals to 750 psia, when 50 psi intervals are resumed. Temperature intervals are 15 degrees except for the two highest values, where interpolation between 1200 and 1400 R was require
21、d. For butane, enthalpy values are tabulated in much closer intervals: 5 deg up to 830 deg R, 15 deg up to 1200 deg R, and 200 deg for higher temperatures. 14.696, 50, loo,. to 500 psia, then 15 psi or 10 psi intervals to 650 psia, when 50 psi intervals are resumed. Data for ethylene are tabulated i
22、n the IUPAC report of 1972, but only for the temperature interval of -50 to +150 C. Since the high pressure data in Table 97-7 begin at +175 C, no conversion of that data was done. 14.696, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, Pressures used are CONVERSION TO ELEMENTAL STATE The pure co
23、mponent ideal gas enthalpy at O K is converted to values on an elemental basis at 25 C (77 F) by adding H* plus the heat of formation to the (Ho - H) values. These values were obtained from API 44 and Hilsenrath. Also, care was taken to use the same values as used by Lenoir in RR-11. The values used
24、 in these calculations are tabulated in the appendix. RESULTS The results of these conversion calculations are given in the tables, which are numbered to correspond with the original research. -2- RR-11 TP-7 RR-83 RR-97 “GpA Experimental Enthalpy Values Referred to Two Base LevelsII Gene A. Cochran
25、and John M. Lenoir, September 1974. lExCesS Enthalpy Experimental Data. Binary Systems: Water+Hydrogen, Water+Methane, Water+Nitrogen, Water+Argonn C. J. Wormald and C. N. Colling, June 1982. ItExceSs Enthalpy Experimental Data. Binary Sptems: Water+Carbon Monoxide, Water+Carbon Dioxidet1 C. J. Worm
26、ald, N. M. Lancaster, and A. J.Sellars, June 1985. “Excess Enthalpy Experimental Data. Binary Systems: Water+Ethylene, Water+Ethane, Water+Propane, Water+n-Butane. Ternary System: Water+Methane+Carbon Dioxide81 C. J. Wormald, N. M. Lancaster, February 1986. IASME Steam Tables“ C. A. Meyer, R. B McCl
27、intock, G. J. Silvestri, and R. C. Spencer, Jr. Fifth Edition 1967 IlTables of Thermodynamic and Transport Properties of Air, Argon, Carbon Dioxide, Carbon Monoxide, Hydrogen, Nitrogen, Oxygen, and Steam“ J. Hilsenrath, C. W. Beckett, W. S. Genedict, L. Fano, H. J. Hage, J. F. Masi, R. L. Nuttall, Y
28、. S. Touloukian, and He W. Woolley. National Bureau of Standards Circular 564, Nov. 15, 1955. Later edition published by Pergamon Press, 1960. Heat of formation Rossini Methane April 30, 1968 Ethane April 30, 1971 Propane October 31, 1971 n-Butane April 30 1972 API 44 data: IlInternation Thermodynam
29、ic Tables of the Fluid State, Ethylene, 1972“ S. Angus, B. Armstrong, K. M. De Reuck, W. Featherstone, and M. R. Gibson. Butterworths, London, 1972. APPENDIX 1 Heat of formation H* plus Heat formation Compound kcal/mole 25 C Btu/ lb Methane Ethane Propane n-Butane . Ethylene - hydrogen Nitrogen Carb
30、on monoxide Carbon dioxide Water . Argon -17.889 -20.236 -30.15 O O -26.42 -94.05 -57.80 O -24 820 12.496 - 2274.67 - 1381.7 - 1156.2 - 1077.47 - 239.682 - 1805.74 - 133.049 - 1830.65 - 3935.6 - 6011 - 66.7026 Note: For water, 859.06 was subtracted from the enthalpy values from the steam table to co
31、nvert to a O K basis. - 3- ENTHALPY CONVERSIONS FOR RR-83 TABLE 1 Mo1.W. Water 18.016 Mol.Wt. Carbon Dioxide 44.010 Mo1.W. Carbon Monoxide. . 28.010 Mole Weight I O KELVIN BASIS Enthalpy Btu/lbl ELEMENTAL BASIS Enthalpy Btu/tbl Experimental 1 Tenp Pressure Temp PressureFractionFraction1 CO Ideal Rea
32、l I CO Ideal Real IHeat of Mixing I Kelvin MPa deg.F psia Steam Steam I Steam or CO2 Mixture Mixture I Steam or CO2 Mixture Mixture I(J/mt) (Btu/lb)l Values at standard atmospheric pressure for 0.5 H20 + 0.5 CO I I I I I I I 363.5 0.10133 194.7 14.7 0.5 0.391 I 283.8 162.3 209.9 211.0 (-5727.2 -1668
33、.4 -3257.1 -3256.0 I 59.5 1.1 I 375.2 215.8 I 293.4 167.5 216.8 217.8 1-5717.6 -1663.1 -3250.1 -3249.2 I 51.2 1.0 I 393.2 248.2 I 308.9 175.7 227.8 228.6 1-5702.1 -1655.0 -3239.1 -3238.4 I 41.7 0.8 1 403.2 266.2 I 317.5 180.2 233.9 234.6 1-5693.5 -1650.5 -3233.1 -3232.4 I 36.5 0.7 I I I 1 I I I I I
34、I I I Values at standard atmospheric pressure for 0.5 H20 + 0.5 CO2 363.4 0.10133 194.5 14.7 0.5 0.290 I 283.1 115.8 164.4 165.1 1-5727.9 -3819.8 -4374.0 -4373.3 I 54.0 0.7 I 375.2 215.8 I 294.3 120.4 170.9 171.6 1-5716.7 -3815.2 -4367.5 -4366.8 I 46.5 0.6 I 383.2 230.2 I 300.2 123.5 174.8 175.4 1-5
35、710.8 -3812.1 -4363.6 -4363.0 I 42.5 0.6 I 392.6 247.1 I 308.4 127.1 179.7 180.2 (-5702.6 -3808.5 -4358.7 -4358.2 I 37.5 0.5 I I I I I Comncnt: Top line of each value for water is extrapolated since in subcooled vapor region. ._ - .- _. GPA TP-38 88 E3 3824677 0033632 336 E -5668.1 -1078.8 -2798.2 -
36、2795.3 I -5672.7 -1079.3 -2800.3 -2796.5 I -5673.4 -1079.4 -2800.6 -2796.7 I -5646.2 -1053.2 -2774.0 -2771.4 I -5646.4 -1053.2 -2774.1 -2771.5 I -5654.9 -1054.3 -2778.0 -2773.7 I 1-5620.5 -1025.0 -2746.7 -2745.0 I 1-5631.0 -1026.6 -2751.7 -2747.9 I 1-5648.2 -1028.8 -2759.6 -2752.2 I -5603.9 -997.8 -
37、2723.5 -2720.8 I -5615.7 -999.6 -2729.1 -2724.0 I -5628.7 -1003.1 -2736.2 -2728.0 I -5645.9 -1003.6 -2742.9 -2730.9 I -5584.4 -968.8 -2698.1 -2694.9 I -5599.0 -971.2 -2705.1 -2698.9 I -5611.7 -973.0 -2711.0 -2702.0 I -5624.6 -974.8 -2716.9 -2705.2 I -5630.9 -975.5 -2719.7 -2705.9 I -5639.7 -976.6 -2
38、723.7 -2707.9 I -5648.4 -977.6 -2727.6 -2709.2 I -5657.7 -978.5 -2731.6 -2710.4 I -5557.9 -937.6 -2668.6 -2666.5 I -5569.2 -939.7 -2674.2 -2669.9 I -5581.6 -941.8 -2680.2 -2673.1 I -5593.9 -943.7 -2685.9 -2675.9 I -5604.6 -945.3 -2690.9 -2677.9 I -5615.4 -946.7 -2695.9 -2680.4 I -5626.0 -948.0 -2700
39、.7 -2681.9 I -5630.4 -948.5 -2702.6 -2682.5 I -5642.5 -949.9 -2708.0 -2683.9 I -5658.7 -950.7 -2714.6 -2688.1 I -5534.2 -905.9 -2639.9 -2638.2 I -5544.1 -908.0 -2644.9 -2641.2 I -5554.8 -910.0 -2650.2 -2644.2 I -5563.8 -911.6 -2654.6 -2646.5 I -5578.6 -914.0 -2661.7 -2650.0 I -5595.9 -916.5 -2669.7
40、-2653.6 I -5615.5 -919.0 -2678.6 -2657.2 I -5640.9 -921.8 -2689.9 -2661.2 I -5656.7 -923.3 -2696.7 -2663.7 I -5677.5 -925.0 -2705.6 -2666.0 I -5487.8 -839.7 -2581.2 -2580.1 I -5495.7 -841.5 -2585.3 -2582.5 1 -5500.6 -842.6 -2587.7 -2584.0 I -5509.0 -844.3 -2592.0 -2586.2 I I I I I I I I I ENTHALPY C
41、ONVERSIONS FOR RR-97 TABLE 8 Mo1.W. Mole Fraction Ut. Fraction Water 18.016 0.5 0.375 Ethane 30.070 0.5 O. 625 448.2 473.2 498.2 523.2 548.2 573.2 598.2 648.2 0.57 0.72 0.74 0.66 0.67 1 .o1 0.55 1 .O9 1.87 0.95 1.65 2.34 3.15 1.25 2.26 3.04 3.76 4.09 4.53 4.94 5.35 1 .o1 1.98 2.95 3.82 4.53 5.19 5.8
42、0 6.04 6.67 7.07 0.93 1.94 2.95 3.74 4.94 6.21 7.51 8.97 9.77 10.7 0.80 1.86 2.48 3.53 -. 347.2 82.7 104.4 107.3 392.2 95.7 97.2 146.5 437.2 79.8 158.1 271.2 482.2 137.8 239.3 339.4 456.9 527.2 181.3 327.8 440.9 545.3 593.2 657.0 716.5 776.0 572.2 146.5 287.2 427.9 554.0 657.0 752.7 841.2 876.0 967.
43、4 1025.4 617.2 134.9 281.4 427.9 542.4 716.5 900.7 1089.2 1301 .O 1417.0 1551.9 707.2 116.0 269.8 359.7 512.0 O KELVIN BASIS Enthalpy Btu/lb Ideal Real Steam C2H6 Mixture Mixture 342.9 302.9 317.9 320.8 338.3 302.4 315.8 319.6 337.6 302.3 315.5 319.5 _ 364.8 328.5 342.1 344.7 364.6 328.5 342.0 344.6
44、 356.1 327.4 338.1 342.4 390.5 356.7 369.4 371.1 380.0 355.1 364.5 368.3 362.8 352.9 356.6 363.9 407.1 383.9 392.6 395.3 395.3 382.1 387.0 392.1 382.3 378.6 380.0 388.1 365.1 378.1 373.2 385.2 426.6 412.0 399.3 386.4 380.1 371.3 362.6 353.3 453.1 441.8 429.4 417.1 406.4 395.6 385. O 380.6 368.5 352.
45、3 476.8 466.9 456.2 447.2 432.4 415.1 395.5 370.1 354.3 333.5 412.9 410.5 408.7 406.9 406.2 405.1 404.1 403.2 444.1 442. O 439.9 438.0 436.4 435.0 433.7 433.2 431.8 431 .O 475.8 473.7 471.7 470.1 467.7 465.2 462.7 459.9 458.4 456.7 418.1 411.1 405.1 399.3 396.4 392.4 388.6 384.5 447.5 441 .9 436. O
46、430.2 425.2 420.3 415.4 413.5 408.1 401.5 421.2 417.2 414.1 411.0 410.2 408.2 406.9 405.7 449.6 446.3 443. O 440.2 438.2 435.8 434.2 433.6 432.3 428.0 476.2 477.9 471.2 474.9 465.9 471.9 461.5 469.6 454.5 466.1 446.4 462.5 437.5 458.9 426.2 454.9 419.4 452.4 410.5 450.2 523.2 542.0 534.9 536.1 515.3
47、 540.2 530.8 533.6 510.4 539.1 528.4 532.2 502.0 537.4 524.1 529.9 -13- ELEMENTAL BASIS Enthalpy Btu/lbl Experimental Steam C2H6 Mixture Mixture I(J/mol) (Btu/lb Ideal Real IHeat of Mixing 162 2.90 212 3.79 219 3.92 146 2.61 148 2.65 240 4.29 96 1.72 212 3.79 412 7.37 150 2.68 284 5.08 457 8.17 669
48、11.97 174 3.11 344 6.15 501 8.96 654 11.70 770 13.77 883 15.79 1025 18.33 1188 21.25 116 2.07 242 4.33 395 7.07 561 10.03 729 13.04 867 15.51 1048 18.75 1123 20.09 1351 24.16 1483 26.53 95 1.70 208 3.72 338 6.05 451 8.07 651 11.64 900 16.10 1199 21.45 1601 28.64 1849 33.07 2217 39.65 63 1.13 i53 2.7
49、4 211 3.77 322 5.76 GPA TP-18 88 4.01 4.05 4.95 5.25 5.80 6.10 6.79 7.03 7.04 7.71 7.96 8.62 8.63 9.00 9.13 9.96 10.4 10.5 10.8 698.2 0.77 797.2 1.74 2.52 3.69 4.95 5.14 5.64 5.79 6.12 6.91 7.20 8.08 8.60 9.36 9.77 10.8 11.1 11.4 11.9 12.2 581.6 587.4 717.9 761.4 841.2 884.7 984.8 1019.6 1021.1 1118.2 1154.5 1250.2 1251.7 1305.3 1324.2 1444.6 1508.4 1522.9 1566.4 111.7 252.4 365.5 535.2 717.9 745.5 818.0 839.8 887.6 1002.2 1044.3 1171.9 1247.3 1357.6 1417.0 1566.4 1609.9 1653.4 1725.9 1769.5 497.3 497.2 464.1 431.8 482.1 479.3 472.7 . 4.70.3