NASA NACA-TN-847-1942 Square plate with clamped edges under normal pressure producing large deflections《夹边在正常压力下产生大挠度的方形板》.pdf

上传人:terrorscript155 文档编号:836416 上传时间:2019-02-20 格式:PDF 页数:30 大小:672.83KB
下载 相关 举报
NASA NACA-TN-847-1942 Square plate with clamped edges under normal pressure producing large deflections《夹边在正常压力下产生大挠度的方形板》.pdf_第1页
第1页 / 共30页
NASA NACA-TN-847-1942 Square plate with clamped edges under normal pressure producing large deflections《夹边在正常压力下产生大挠度的方形板》.pdf_第2页
第2页 / 共30页
NASA NACA-TN-847-1942 Square plate with clamped edges under normal pressure producing large deflections《夹边在正常压力下产生大挠度的方形板》.pdf_第3页
第3页 / 共30页
NASA NACA-TN-847-1942 Square plate with clamped edges under normal pressure producing large deflections《夹边在正常压力下产生大挠度的方形板》.pdf_第4页
第4页 / 共30页
NASA NACA-TN-847-1942 Square plate with clamped edges under normal pressure producing large deflections《夹边在正常压力下产生大挠度的方形板》.pdf_第5页
第5页 / 共30页
点击查看更多>>
资源描述

1、1w.”.+=-= =*-”-=+“3;:-”G*. ._TECHNICALNOTESNATIONALADVISORYCOMMITTEEIOR AERCNAUT!ICS.-.N(2.847. _SQUARE PLATEWITH CLAi4PEDEDGES UNDER NORMALPRESSUREPRf3DUCIHGLARGEDEFLECTIONS .-By SamuelLevy .-NaiicnalBureau of Standards. DOCUMENT doaa.mentcontainsclaeaifiedinformationafkctingthe hkmnatDefenwof tbe

2、United StateswiCOMMTYE13;FQR AERONA-UTICS - .-. . -. .TECHNICAL.NOTE.,NO847 .: .- .=-.-4 “. “. -,-.-.,. . .-_ .=.- ,_+UARE FLATii WITHC”tiMED.Eii% Ul.PEESSURZI”- “ “:”- ;.L._._,. . .PRODUCINGR.E. ,.,. .,. By Sariue:.,DEFLEGTZONS : - . m.-., .z- -.- .-,.-m=.+.+Levy . - - -:;*. -.:-r,.“ :“- . .l.-. :-

3、“.SUMMARY “. :- . ,.- -.=- . . -f. . . ., .-” :-.- LA theor;plate with clampededgeswas givenby Henclcyin reference2 and an approximatesolutionfor largedeflectionswa.epresentedby Way in reference3. In a previous.pape5 “ “ -“-=(reference1) there iB presenteda solutionof the funds -mentalVon,K_-+sionan

4、d lateralloading. .-.=- In the presentpaper.atheor.et.ica”lan,a-ly”sisi“s-iv”e”“-”-for the stressesand deflectione”of a squarelateundernormalpressureyroducinglarge,de,flectio,na,. The edge . -, -supportsare assumed“t-oclamp the”l”a,t.erigidlyagainstrotationsand -. . . . . . . . . -.Provided by IHSNo

5、t for ResaleNo reproduction or networking permitted without license from IHS-,-,-2 IJACA!J?ecknicalNote No. 847simplysupportedrectangularplate. The resultsfc?rs-malldeflectionsobtainedby the analysisagree exactlywiththose o,fHenckyand for largedeflectionsdifferby Ies-sthan 5 percentfrom theapproxima

6、tesolutionnf Way.The workwas carried-on with thefinancialassistanceof the NationalAdvisoryCommitteefnr Aeronautics. Ac-knowledgmentis made to theBureau ofAeronautics,NavYDepartment,for its cooperationin a programof test-sofrectangularplatesunder normalpressurethatfurnishedthe backgroundfor the prepa

7、rationof this paper. Theauthor is gratefulfor theasistanceof membersof theEngineeringMechanicsSectionof the NationalBureau ofStandards,particularlythatGreenman.FUNDAM13NT!.LLof Dr. W. Rambergand Mr. S.EQUATIONSSymbolsConsideran initiallyflat squareplate of unif%rmthicknese(fig.1), and leta lengthof

8、sidesh thicknessP normalpressure, assumed”unifcrmw normaldisplacementof points of middlesurfaceh.a71.,E YoungrsmodulusL PoissonlsratioD Eh: flexuralrigidityof plat”e”12(1+2)X*Y coordinateaxes,lyingalong edges of platewiththeir originat one,cornermx,my edge,beti$”iqgmomentsPer“unitlengthabout x andY

9、r“esect-ively ,.“axes, .-,.a normalstress “T shearingstess.+Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NACA TechnicalNote No. 847 3tensilestra-in, “ unit el”o”rigationshearngstra,in .-.T- . extreme-fiberstressesin dir”ecti”onsofaxes median-fiber

10、stressesin dir-e,ctionsof axesextremefiberbendingstresse,sin directionsofaxesdeflectioncoefficientsstressfunction . .stresscoefficientsaveragemedian-fi%erstressesin s$ andydirections,respectivelyauxiliarypressurereplacingedge momentsunif2rmn?rmalpressure P. expressedas a Fourierseries= Pa(x,y)+ P(x,

11、Y)coefficientinXourier seriesfor pressure,-PC(X,Y) .momentarm of auxiliarypressuredistribution,PJX,Y)momentcoefficientsExpressionsfor Stressesa“ndStrainsThe generalequationsfor stressesand strainsaredevelopedby imoshenkoin reference4 (ch. IX) and arealso given in reference1. The Stressesat the middl

12、esurfaceof the relateare related to the stressfunctionF by: ,.a2Fcrl.-Y ?)Xa I“.(1).Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-4 NACATechnicalMote N;-847the extreme-fiberbendingstressesin the plateare re-latediiothe deflectionsbyEh(-?JW)J32w .G;

13、=_2(1-W2) ax2 2;Eh(a2w a2wall= _ +lJ)/“(2)Y2(1-I.L2)bya “. x2 .Eh a2w()T1f=- Xy (l+M) axay(3)and the extreme-fiberbendingstressesat the edges of theplateare relatedto the bendingmomentsper unit lengthby:“l6my =(x=O,x=a)6myII0Y =w ha1 -“6mxQ11x =lfha .:.(y=O,y=a)6m=all= _.Y .ha J!l?hestrainsat the mi

14、ddlesurfaceof theplate are:.(4)Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NACA TechnicalNobeIMb.847 58RelationsbetweenEdge Mdmentsand LateralPressureThe requirededge moments my=willbe replacedby an auxiliarypressuredistrib%;on” a(xSY)near theedg

15、es of the plateas shown in figure2. If thispressuredistributionis expressed%y a Fourierseries (reference5, p.295)and the value . 4TTmxpa-(x,y)= .: i Brlys sln (5) “-r=T,3,5. a S=j3#5”.a2 “a,.,.Express;m= and bj a Fourierseries,Kher8 ksYand kr are coefficientsto bedeterrninedand wherefor.,a squarepla

16、te ks = kr when s =r,4a2 ? “- rlrxx = PIJ k= sin n l?=1,3,5. a“co7.“4a2 ) -Y=- ks sinS=1,3,5.;.1- -(6) .Insertingequation (6) in equation(5)giv6s .-,=,4.,2Pa(x,Y)=;).p y (rks+skr)sinsin (7)r d=173,5.S=1,3,5.The uniformnormalpressure .p may also he ex-pressedby a Fourierseries (reference5, p. 295) as

17、,m co,4,2 “() . sin= s7Typb(x,y)( .P “(l-r, sin (8) -r rs a a=1,3,5 8=1,3.,Sc-c,The additionof the,tiniformnormalpr”essurep (xry)?and the auxiliarypressurereplacingthe edge mcmen s.Pa(x,Y) is obtainedby adding equatinns(7)an(16)Provided by IHSNot for ResaleNo reproduction or networking permitted wit

18、hout license from IHS-,-,-8 NACfLTechnicalNote.No.847The family of equationsrelatingthe pressurecoeffi-cients Pr,s and the deflectioncoefficients Wm,n arealso givenby the generalsolution(reference1). For thespecialcase a = b(squareplatej,presentedin thispaper, the.first22 termsin each of thss.eequ y

19、= 0, y=a wmn sin (19)m= sX,3,6,. an=l,3,5.,.Equations(18)or (19)are equivalentto the familyof equationsO=w1,1+3W1,3+5W1,5+7W1,7+. Cl=w,+3w,.J+5W3,5+7W3,7+. O=w5,1+3W5,3+5W5*5+7W7+.s J. ,. . a71 a71 a15(20)Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,

20、-,-NAc!ATechnical”NeteNo647 9.The deflectioncoefficients m.n mtistnow %e de-.-terminedfrom table 1 by”solvingeach equationfor thelinearterm in terms of the quhic termsand the.pressurecoefficients Pr,s- The deflectioncoefficients m.nthus obtainedare now substitutedintoequations(20);and, for the press

21、urecoefficientspr.sare substitutedtheirvaluesas given%y equation (lb)-The resultingequationsare,(1=2.835+7.66k1+0.324k3+0.0800k5+0.03Q3k7+0.0145k9+EKl)o=0.0523+0.324kl+l.713k3+0.140sk5+Oo0675kT.60k9+.K3Io=0.00680+().08()()k1+0.1405k3+o.96k5+.0690k7+o.0433k9+.+Kq aly)o=0.001767+o.03031cl+0.0675k3+0.0

22、690k5+.660k7+0.0402k9+.+K7O:000648+0.0145kl+0.0360k3+0.0433k5+0.0402k70.f3t15k9+.+K9J. . a71 a15 a15 a15 a15where K1.K are functios”of the pressure p and of the cubes of the deflection”-functiofim,n” The first 22terms in the equationsfor the first five coefficients Krare given in table2. As an examp

23、leof the use of table2,.SOLUTIONOK EQUATIOFSValuesof DeflectionCoefficients m,n andEdge MomentCoefficients kr.The methodof obtainingthe requiredvalues of the de-flectioncoefficients m,n and the edge momentcoeffi-wl-,-”-cients kr con ists of assumingvaluesfor -2 -h and thenpa W1,3 3t3solvingfor , kl,

24、 k3, k5, byXh4 h hProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-10 NACA TechnicalNot=-No. 847successiveapproximationfrom the simultaneousequationsin ta%le 1 and equations(10)and (21). These.calcula-W1l.tionshavebeen madefor-iOvalues of -W1,3 a) W1,

25、3 ,=.6”28i/h 3”2Qth ) (28a) .:the use of only the,first three terms in the first equation.l!7,3 W3,3of table 1, excluding cubicterms involving 9 ,-W1,5 h h, etc.,as factors, gives the equationh _ -Pi; la4 Wl,l wl,l 3- -+ “0.370 ()i- 0.490 - “(t28b)n4Eh4 h “h,. , ., .,and the use of”only the first tw

26、o t“ermsin the firstequation of table.1, excludingall cubic terms, givestheequation , , . pl,1a4 “-wl, l:0. = “-1- o.370-. 4Eh4. =,.,-(28C) .-.- -.,Itis evidentfrom table 6 thatthe”convergenceisrapid for thecenterdeflection. The”convergencei.ssome-what slower”in the case of the b“e.nd.ing stressat t

27、he rnidpoint of tiheedge. It is estirua”tedfram table 6 that thepossibleerror in table5 is less than 2 percent.,=.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-14 NACA TechnicalNo”teiJo.”-847COMPARISONWITH THE RESULTS OBTAINEDBY PIZ3VIOUSAUTHORSThe

28、 ClampedRectangularPlatewith SmsllDeflections!l!he.earliestwork on the problemof the clampedrec-tangularplateknown.to the author is that in 1902byKoialovich(reference7). Koialovichsolvedthepreblemby using trigonometricseries. In 1913Hencky (reference2), usinga methodwhich he creditstoM. Levy, madeat

29、horoughanalystsof the momentsand deflectionsforplateswith smalldeflections. In 1914Boobnov (seep.222 of reference4) extendedthescopeof oia.lovichlsearlierwork.Since that time”additionalwork on theproblemextendingthe analysistc differenttypesof load-ing and a widerrange of plate sizeshas been donebyN

30、adai (reference8), !Timoshenko(references4 and 9),I#ojtaszak(reference10),Evans,(reference11),Young(reference12)-;.andPickett reference13). The resultsof theseauthorsfor the squareplatewith clampededgesagree Czoselywith Henckysresultspresentedin reference 2. The presentpaper gives,for small deflecti

31、ons,a value of the centerdeflectionof 0.001263pa4/11ascomparedwith Henckytsvalueof 0.001265pa4/D;and.avalue of the bending“momentperpendiculartO the egeatmidpoint.of0.0512 a2p csGmparodwith-HenckyIsvalue of0.0513sap. .,The ClampedRectangularPlatewith LargeDeflectionsThe onlypreviousanalysisof square

32、plateswithclampededgesunder normalpressureproducinglargede-flectionsthat is known to the author iS the analysisby Way (reference3) in which theRitz energymethod“isused with polynomialssatisfyingtheboundaryconditions,andcontd,ining11 undeterminedconstant Althoughhiscalculationswere made for a Poisson

33、fsratio of 0.3, itappearsfrom Waysanalysisof circularplates (ref-er-ence 15) thatsmall changesin Poissonrsratio do “notappreciablyalter the solution. In”figures6 and 7 arecomparedtheresultsobtainedby Wtiyin reference.3 wit-hw = 03 and the resultsof the presentpaperwith p =0.316. The agreement“isexce

34、llent(within5percent)forboth thetotal stressat the middleof the sideand thecenterdeflection. Theagreementbetweenthe membranestressesis not so good. In no case,however,do themembranestressesdifferby more than4 percentof thetotal stress.Provided by IHSNot for ResaleNo reproduction or networking permit

35、ted without license from IHS-,-,-NACA TechnicalNote No. 847 15The InfinitePlate Stripand the CircularPlate. ,The values of the centerdeflectionand of the ex-tremefiberstressesat the centerof the sidesfor asquareclampedplatewith Ia,rgedeflectionare comparedin figures8 and 9 with thosefor a clampedcir

36、cularplate (reference14)lofdiametera and thosefor aclampedlongrectangularplate (references4 and 15) ofwidth a. As wouldbe expected,thesquare plate is morerigid than the long rectangular-plateand more flexiblethan the circularplate.NUMERICALE2CAMPLES 13mgle.1Calculatethe centerdeflectionand the maxim

37、ufiextrenefiberstressfor a 10by 10 by 0.05inchaluminumalloy plate (E= 107 lb/in2,jL= 0.316) with clampededges, subjectedto a normalpressureof 2 poundspersquare inch.The pressureratio is:pa4 2 x 104=Eh4 107 x (0.05)4,“= 320From figure3, the correspondingdeflectionratio iscenter.= 1.72hso that the cen

38、terdeflectionisw = 1.72X 0.05 = 0.0860inchcenterFrcm figure5, the maximumextremefiberstressratioforthe edge at its midpointisoaz = 65.0Eh2so that the maximumextreme-fiberstress isProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-16 NACATechnicalNote No

39、.107” X. (0.05)2a= 65.0 - = 16,300 pounds102 “Zxample2.-.per squareinchCalculatet-hepressurethatwill producea maximumextreme-fiberstressof 30,000pbundsper squareinch ina 15- by 15-by O.IO-inchaluminum-alloyplatewithclampededges. .-The maximumextreme-fiberstressratio is,Ua a 30000 x 152”.-= 67*5 = 10

40、7 x (0.10)2Eh2From figure5, the correspondingpres$ureratio ispa4 = 339Eh4so that the normalpressureis339 x 107 x (0.10)4P= = 6.70poundsper squareinch“154NationalBureau of Standards,Washington,D. C.,May 24, 1941.-. -. .1.,Provided by IHSNot for ResaleNo reproduction or networking permitted without li

41、cense from IHS-,-,-NACA TechnicalNote No. 847 17 .REFERENCES. . .1. Levy, S.: BendingofRe,ctngular.Plateswith LargeDeflections. !I?.N. No. 846,NACA, 1942.Hencky.,H.”hber.denSpannungszus.tandi-n:”echteckigen,-.-2. “.-ebenenPlatten. DoctorIS.diss.,Darmstadt, R.Oldenbourg(Munich),1913., .-3. Way, Stewa

42、rt: UniformlyLoaded,Clamped,RectangularPlateswith LargeDeflection. Proc,.,Fifth Int.Cong.Appl. Mech. (Cambridge,Mass., 1938). JohnWileypt. 4, of Ecyk.er Math.Wiss., 1910,art. 27, pp. 31185.?. Koialovich,Boris Mikhailovich: Ob odnumuravnenti. chastnfimirproizvodniimi chetvertagoporiadkaIloctorialdiss

43、.,Sankt.,(Petersburg),1902. . 8. Nddai,A.: ElastischeFlatten. JuliusSpringer (Berlin),1925,pp. 18084.9.Timoshenko,StephenP.: Bending of RectangularPlateswith ClampedEdges. Proc.,FifthInt.Cong,Appl.14ech.(Cambridge,Mass.,1938). John Wiley9lg4:o245:03M00402.0Canterdeflectioncentorho.237,471.695.9121.1

44、211.3231.5211.7141,902StressatmidpointLfedge-hzlna2o“5.3611. OJj16.9723,$30,63g.247.056.366,2o.12.471.06l.n2.924.235;7i37609.64o5.4su.5218.0325.3233.542.452.?363.975.8Stressatcenterofplate ,ind%mao2.54.66.7a.g9.911.112.913./315.1w direct(b) y=o, y=a.Y9cdistributionforapplyingtheedges(a)x = 0,Provide

45、d by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-. *A , dvtba” midpoint Of (06s9) .9, cd mipointOffD6SD)ic,m“+Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-*. . .tS, Uumped .squme /de nxwf piper)&iksons rut

46、io, 0.316.-iC. C/amDed clcubrbi? &eference .3)-PoAsonG rafio,”0.3.- /00 “./Pressure rofio, pa+/EhqFigure 9.- Variation of meximomextreme fiber stress at W&with pressure for square plate, oiraulu plate,aod long reotanguhr plate.a.28.R, Clmped ttnvg recfongulopl (ref/.Poi&s ru+io, 0.316.+o Cokxhted poinb1 1 1 1 1 I 1 1 I Io /00 200 300400Pressure ratio, pa+JEh4rwla 0.- Variation of deflection at oenter with prmmurefor quare pltbte, circtimr p18*e, and lemgreotangulu plate.IProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-

展开阅读全文
相关资源
猜你喜欢
  • DIN 4261-5-2012 Small sewage treatment plants - Part 5 Infiltration of aerobic biologically treated domestic wastewater《小型污水处理厂 第5部分 好氧生物处理生活污水所用的渗透膜》.pdf DIN 4261-5-2012 Small sewage treatment plants - Part 5 Infiltration of aerobic biologically treated domestic wastewater《小型污水处理厂 第5部分 好氧生物处理生活污水所用的渗透膜》.pdf
  • DIN 4262-1-2009 Pipes and fittings for subsoil drainage of trafficked areas and underground engineering - Part 1 Pipes fittings and their joints made from PVC-U PP and PE《交通区地下排水设施.pdf DIN 4262-1-2009 Pipes and fittings for subsoil drainage of trafficked areas and underground engineering - Part 1 Pipes fittings and their joints made from PVC-U PP and PE《交通区地下排水设施.pdf
  • DIN 4262-3-2010 Pipes and fittings for subsoil drainage of trafficked areas and underground engineering - Part 3 Pipes and fittings made from concrete and their joints《高速公路和土木工程用混凝.pdf DIN 4262-3-2010 Pipes and fittings for subsoil drainage of trafficked areas and underground engineering - Part 3 Pipes and fittings made from concrete and their joints《高速公路和土木工程用混凝.pdf
  • DIN 4263-2011 Geometrical values of drains and sewers for hydraulic design for water and waste water engineering《给排水工程用液压设计的污水管和排水管几何值》.pdf DIN 4263-2011 Geometrical values of drains and sewers for hydraulic design for water and waste water engineering《给排水工程用液压设计的污水管和排水管几何值》.pdf
  • DIN 4266-1-2011 Drainage pipes for landfills - Part 1 Drainage pipes made from PE and PP《垃圾填埋地用排污管 第1部分 PE和PP制成的排污管》.pdf DIN 4266-1-2011 Drainage pipes for landfills - Part 1 Drainage pipes made from PE and PP《垃圾填埋地用排污管 第1部分 PE和PP制成的排污管》.pdf
  • DIN 4266-3-2015 Drainage pipes for landfills - Part 3 Drainage pipes and fittings and their joints made from concrete《掩埋的排放管 第3部分 混凝土制排水管道和配件以及其接头》.pdf DIN 4266-3-2015 Drainage pipes for landfills - Part 3 Drainage pipes and fittings and their joints made from concrete《掩埋的排放管 第3部分 混凝土制排水管道和配件以及其接头》.pdf
  • DIN 4271-1-2012 Manhole tops with vents class B 125 - Part 1 Summary《B 125级人孔盖 第1部分 总则》.pdf DIN 4271-1-2012 Manhole tops with vents class B 125 - Part 1 Summary《B 125级人孔盖 第1部分 总则》.pdf
  • DIN 4271-2-2012 Manhole tops with vents class B 125 - Part 2 Particulars《B 125级带通风口的人孔盖 第2部分 详细数据》.pdf DIN 4271-2-2012 Manhole tops with vents class B 125 - Part 2 Particulars《B 125级带通风口的人孔盖 第2部分 详细数据》.pdf
  • DIN 42801-1980 Connection device for potential equalization conductors《电位均衡导线用接线装置》.pdf DIN 42801-1980 Connection device for potential equalization conductors《电位均衡导线用接线装置》.pdf
  • 相关搜索

    当前位置:首页 > 标准规范 > 国际标准 > 其他

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1